-
Notifications
You must be signed in to change notification settings - Fork 65
/
wss3-svm.cl
864 lines (751 loc) · 34.7 KB
/
wss3-svm.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
;;;Support Vector Machine Package using SMO-type algorithm
;;;Abe Yusuke,Jianshi Huang. 2010 June
;;;Reference: Working Set Selection Using Second Order Information for Training SVM.
;;;Chih-Jen Lin. Department of Computer Science. National Taiwan University.
;;;Joint work with Rong-En Fan and Pai-Hsuen Chen.
(defpackage :svm.wss3
(:use :cl
:hjs.util.meta
:hjs.util.vector
:hjs.learn.read-data
:hjs.util.matrix)
(:import-from :decision-tree
#:sum-up)
(:export #:make-svm-learner
#:load-svm-learner
#:make-linear-kernel
#:make-rbf-kernel
#:make-polynomial-kernel
#:make-one-class-svm-kernel
#:svm-validation
))
(in-package svm.wss3)
;; (declaim (optimize speed (safety 0) (debug 1)))
(defparameter *eps* 1d-3)
(defparameter *tau* 1d-12)
(defparameter *training-size* 0)
(defparameter *label-index* 0)
(defparameter *alpha-array* (make-array 0 :element-type 'double-float))
(defparameter *gradient-array* (make-array 0 :element-type 'double-float))
(defparameter *kernel-function-result* (make-array 1 :element-type 'double-float :initial-element 0d0))
(defparameter *kernel-cache* nil)
(defparameter *kernel-vec-d* (make-dvec 0))
(defparameter *iteration* 0)
(declaim (type double-float *eps* *tau*)
(type fixnum *training-size* *label-index* *iteration*)
(type dvec *alpha-array* *gradient-array* *kernel-vec-d*)
(type (simple-array double-float (1)) *kernel-function-result*)
;; (type (or null cache) *kernel-cache*) ; cache is not declared yet
)
(declaim (inline eta eta-cached sign update-gradient select-i select-j)
(notinline get-cached-values))
;;;;
(defstruct kernel-function
name
scalar
vectorized)
(defmacro call-kernel-function-uncached (kernel-function point1 point2)
`(progn
(funcall (the function (kernel-function-scalar ,kernel-function)) ,point1 ,point2)
(the double-float
(aref *kernel-function-result* 0))))
(defmacro call-kernel-function-vectorized-uncached (kernel-function point1 point2s result &optional start end)
`(progn
(funcall (the function (kernel-function-vectorized ,kernel-function)) ,point1 ,point2s ,result ,start ,end)))
(defmacro call-kernel-function (kernel-function point1 point2)
`(call-kernel-function-uncached ,kernel-function ,point1 ,point2))
(defmacro call-kernel-function-vectorized (kernel-function point1 point2s result &optional start end)
`(call-kernel-function-vectorized-uncached ,kernel-function ,point1 ,point2s ,result ,start ,end))
(defmacro define-kernel-function ((point1-var point2-var &optional (name :unknown)) &body body)
(check-type point1-var symbol)
(check-type point2-var symbol)
(let ((point2-vec-var (intern (concatenate 'string (string point2-var) "-ARRAY"))))
(with-unique-names (result i start end)
`(make-kernel-function
:name ,name
:scalar
(lambda (,point1-var ,point2-var)
(declare (type dvec ,point1-var ,point2-var)
(optimize speed (safety 0)))
(let ((,result (locally ,@body)))
(declare (type double-float ,result))
(setf (aref *kernel-function-result* 0) ,result)
nil))
:vectorized
(lambda (,point1-var ,point2-vec-var ,result &optional ,start ,end)
(declare (type dvec ,point1-var ,result)
(type (simple-array dvec (*)) ,point2-vec-var)
(optimize speed (safety 0))
(type (or null array-index) ,start ,end))
(assert (<= (length ,point2-vec-var) (length ,result)))
(loop for ,i of-type array-index from (or ,start 0) below (or ,end (length ,point2-vec-var))
for ,point2-var of-type dvec = (aref ,point2-vec-var ,i)
do
(setf (aref ,result ,i) (locally ,@body))
finally
(return ,result)))))))
#| e.g.
(define-kernel-function (z-i z-j :linear)
(loop
for k of-type array-index below (1- (length z-i))
sum (* (aref z-i k) (aref z-j k))
into result of-type double-float
finally (return result)))
(defun make-rbf-kernel (&key gamma)
(declare (type double-float gamma))
(assert (> gamma 0.0d0))
(define-kernel-function (z-i z-j :rbf)
(loop
for k of-type array-index below (1- (length z-i))
sum (expt (- (aref z-i k) (aref z-j k)) 2)
into result of-type double-float
finally (return (d-exp (* (- gamma) result))))))
|#
;;;; a circular list
(defconstant +double-float-in-bytes+ 8)
(defstruct head
prev
next
data ; data[0, len) is cached in this entry
(len 0 :type fixnum))
(defstruct (cache (:constructor %make-cache (total size heads lru-head)))
(total 0 :type fixnum)
(size #.(* 100 1024 1024) :type fixnum) ; size of free space (bytes)
(heads #() :type (simple-array head (*)))
(lru-head (make-head) :type head))
(defun make-cache (total size)
(let* ((heads (coerce (loop repeat total collect (make-head)) 'vector))
(lru-head (make-head))
(size (max (/ size +double-float-in-bytes+) (* 2 total))))
(setf (head-next lru-head) lru-head)
(setf (head-prev lru-head) lru-head)
(%make-cache total size heads lru-head)))
;;
(defmacro swap (a b)
;; `(psetf ,a ,b ,b ,a)
(with-unique-names (va vb)
`(let ((,va ,a)
(,vb ,b))
(setf ,a ,vb)
(setf ,b ,va))))
;;
(declaim (type (function (cache head) cache) lru-delete lru-insert)
(type (function (cache simple-vector array-index array-index) dvec) get-cached-values)
(inline lru-delete lru-insert))
(locally (declare (optimize speed (safety 0)))
(defun lru-delete (cache head)
(declare (ignorable cache)
(type cache cache)
(type head head))
(let ((next (head-next head))
(prev (head-prev head)))
(setf (head-next prev) next
(head-prev next) prev))
cache)
(defun lru-insert (cache head)
(declare (type cache cache)
(type head head))
(with-slots (lru-head) cache
(let ((old-last (head-prev lru-head)))
(setf (head-next head) lru-head
(head-prev head) old-last
(head-next old-last) head
(head-prev lru-head) head)))
cache)
(defun get-cached-values (cache training-vector index len kernel-function)
(declare (type cache cache)
(type array-index index)
(type fixnum len)
(type simple-vector training-vector)
(type kernel-function kernel-function))
(with-slots (heads lru-head size) cache
(declare (type (simple-array head (*)) heads)
(type head lru-head)
(type fixnum size))
(let* ((h (aref heads index))
(h-len (head-len (the head h)))
(more (- len (the fixnum h-len))))
(declare (type head h)
(type fixnum h-len more))
(when (not (zerop h-len))
(lru-delete cache h))
(when (> more 0)
;; free old space
(let (biggest-data-vec
(biggest-data-vec-length 0))
(loop while (< size more)
do
(let* ((old (head-next lru-head)))
(lru-delete cache old)
(incf size (head-len old))
;; reuse released data vec
(let ((data-size (length (the dvec (head-data old)))))
(when (> data-size biggest-data-vec-length)
(setf biggest-data-vec (head-data old))
(setf biggest-data-vec-length data-size)))
(setf (head-data old) nil)
(setf (head-len old) 0)))
;; allocate new space
(let ((new-data (if (and biggest-data-vec (>= biggest-data-vec-length len))
biggest-data-vec
(make-dvec len)))
(h-data (head-data h)))
(when h-data
(locally
(declare (type dvec new-data h-data))
(replace new-data h-data)))
(setf (head-data h) new-data)))
(decf size more)
(setf (head-len h) len)
#+nil
(loop with data of-type dvec = (head-data h)
for j of-type array-index from h-len below len
do
(setf (aref data j)
(call-kernel-function kernel-function (aref training-vector index) (aref training-vector j))))
(call-kernel-function-vectorized kernel-function (aref training-vector index)
training-vector (head-data h) h-len len))
(lru-insert cache h)
(head-data h))))
;; (0) h includes neither i nor j: do nothing.
;; (1) h includes both i and j: the corresponding data would be swapped.
;; (2) h contains i but not j (recall that i < j): the column would be thrown away.
(defun swap-index (cache i j)
(declare (type cache cache)
(type array-index i j))
;;
(when (= i j)
(return-from swap-index))
;;
(with-slots (heads lru-head size) cache
(declare (type (simple-array head (*)) heads)
(type head lru-head)
(type fixnum size))
(let* ((head-i (aref heads i))
(head-j (aref heads j)))
(declare (type head head-i head-j))
(unless (zerop (head-len head-i))
(lru-delete cache head-i))
(unless (zerop (head-len head-j))
(lru-delete cache head-j))
(swap (head-data head-i) (head-data head-j))
(swap (head-len head-i) (head-len head-j))
(unless (zerop (head-len head-i))
(lru-insert cache head-i))
(unless (zerop (head-len head-j))
(lru-insert cache head-j))
;;
(when (> i j)
(swap i j))
;;
(loop for h of-type head = lru-head then (head-next h)
until (eq h lru-head)
when (> (head-len h) i)
do
(let ((h-data (head-data h)))
(declare (type dvec h-data))
(if (> (head-len h) j)
(swap (aref h-data i) (aref h-data j))
(progn
(lru-delete cache h)
(incf size (head-len h))
(setf (head-data h) nil)
(setf (head-len h) 0))))))))
)
;;;;
(locally (declare (optimize speed (safety 0)))
(declaim (ftype (function (simple-vector kernel-function fixnum fixnum) double-float) eta)
(ftype (function (dvec dvec fixnum fixnum) double-float) eta-cached))
#+allegro
(eval-when (:compile-toplevel :load-toplevel :execute)
(setf (get 'eta 'sys::immed-args-call)
'((:lisp :lisp :lisp :lisp) double-float)))
(defun eta (training-vector kernel-function i j)
(declare (type simple-vector training-vector)
(type kernel-function kernel-function)
(type array-index i j)
(ignorable kernel-function training-vector))
(let ((point-i (svref training-vector i))
(point-j (svref training-vector j)))
(declare (type dvec point-i point-j))
(+ (call-kernel-function kernel-function point-i point-i)
(call-kernel-function kernel-function point-j point-j)
(* -2.0d0 (call-kernel-function kernel-function point-i point-j)))))
#+allegro
(eval-when (:compile-toplevel :load-toplevel :execute)
(setf (get 'eta-cached 'sys::immed-args-call)
'((:lisp :lisp :lisp :lisp) double-float)))
(defun eta-cached (kernel-vec-i kernel-vec-d i j)
(declare (type dvec kernel-vec-i kernel-vec-d)
(type fixnum i j))
(the double-float
(+ (aref kernel-vec-d i)
(aref kernel-vec-d j)
(* -2.0d0 (aref kernel-vec-i j)))))
(defun update-gradient (training-vector kernel-vec-i kernel-vec-j i j old-a-i old-a-j)
(declare (type simple-vector training-vector)
(type double-float old-a-i old-a-j))
(let* ((alpha-array *alpha-array*)
(gradient-array *gradient-array*)
(label-index *label-index*)
(training-size *training-size*))
(declare (type fixnum i j training-size label-index)
(type dvec alpha-array gradient-array kernel-vec-i kernel-vec-j))
(let ((delta-a-i (- (aref alpha-array i) old-a-i))
(delta-a-j (- (aref alpha-array j) old-a-j)))
(declare (type double-float delta-a-i delta-a-j))
(loop
for k of-type array-index below training-size
with point-i of-type dvec = (svref training-vector i)
with point-j of-type dvec = (svref training-vector j)
with y-i of-type double-float = (aref point-i label-index)
with y-j of-type double-float = (aref point-j label-index)
as point-k of-type dvec = (svref training-vector k)
as y-k of-type double-float = (aref point-k label-index)
as s-i of-type double-float = (* y-k y-i)
as s-j of-type double-float = (* y-k y-j)
do
(progn
(incf (aref gradient-array k)
(+ (* s-i (aref kernel-vec-i k) delta-a-i)
(* s-j (aref kernel-vec-j k) delta-a-j))))))
nil))
(defun qp-solver (training-vector kernel-function c weight cache-size-in-bytes)
(declare (type simple-vector training-vector)
(type kernel-function kernel-function)
(type double-float c weight))
(setf *iteration* 0)
(setf *training-size* (length training-vector))
(setf *label-index* (1- (length (the simple-array (aref training-vector 0)))))
(setf *alpha-array* (make-array *training-size* :element-type 'double-float :initial-element 0.0d0))
(setf *gradient-array* (make-array *training-size* :element-type 'double-float :initial-element -1.0d0))
(setf *kernel-vec-d* (make-dvec *training-size*))
(setf *kernel-cache* (make-cache *training-size* (or cache-size-in-bytes (* 100 1024 1024))))
(let ((tau *tau*)
(training-size *training-size*)
(label-index *label-index*)
(alpha-array *alpha-array*)
(gradient-array *gradient-array*)
(kernel-vec-d *kernel-vec-d*)
(kernel-cache *kernel-cache*))
(declare (type double-float tau)
(type fixnum training-size)
(type array-index label-index)
(type dvec alpha-array gradient-array kernel-vec-d)
(type cache kernel-cache))
(loop for k of-type array-index below training-size
for point-k = (aref training-vector k)
do
(setf (aref kernel-vec-d k) (call-kernel-function kernel-function point-k point-k)))
(loop
while t
do (multiple-value-bind (i j)
(working-set-selection3 training-vector kernel-function c weight)
(declare (type fixnum i j))
(incf *iteration*)
(when (= -1 j)
;; release memory
(setf *kernel-cache* nil)
(return-from qp-solver *alpha-array*))
(let ((y-i (aref (the dvec (svref training-vector i)) label-index))
(y-j (aref (the dvec (svref training-vector j)) label-index))
(kernel-vec-i (get-cached-values kernel-cache training-vector i training-size kernel-function)))
(declare (type double-float y-i y-j)
(type dvec kernel-vec-i))
(let ((a (eta-cached kernel-vec-i kernel-vec-d i j))
(b (- (* y-j (aref gradient-array j))
(* y-i (aref gradient-array i)))))
(declare (type double-float a b))
(when (<= a 0.0d0)
(setf a tau))
;;update alpha
(let ((old-a-i (aref alpha-array i))
(old-a-j (aref alpha-array j)))
(declare (type double-float old-a-i old-a-j))
(incf (aref alpha-array i) (/ (* y-i b) a))
(decf (aref alpha-array j) (/ (* y-j b) a))
;;clipping
(let ((diff (- old-a-i old-a-j))
(sum (+ old-a-i old-a-j))
(new-a-i (aref alpha-array i))
(new-a-j (aref alpha-array j))
(c-i (if (plusp y-i)
c
(* weight c)))
(c-j (if (plusp y-j)
c
(* weight c))))
(declare (type double-float diff sum new-a-i new-a-j c-i c-j))
(if (/= y-i y-j)
(progn
(if (> diff 0.0d0)
(when (< new-a-j 0.0d0)
(setf (aref alpha-array j) 0.0d0)
(setf (aref alpha-array i) diff))
(when (< new-a-i 0.0d0)
(setf (aref alpha-array i) 0.0d0)
(setf (aref alpha-array j) (- diff))))
(if (> diff (- c-i c-j))
(when (> new-a-i c-i)
(setf (aref alpha-array i) c-i)
(setf (aref alpha-array j) (- c-i diff)))
(when (> new-a-j c-j)
(setf (aref alpha-array j) c-j)
(setf (aref alpha-array i) (+ c-j diff)))))
(progn
(if (> sum c-i)
(when (> new-a-i c-i)
(setf (aref alpha-array i) c-i)
(setf (aref alpha-array j) (- sum c-i)))
(when (< new-a-j 0.0d0)
(setf (aref alpha-array j) 0.0d0)
(setf (aref alpha-array i) sum)))
(if (> sum c-j)
(when (> new-a-j c-j)
(setf (aref alpha-array j) c-j)
(setf (aref alpha-array i) (- sum c-j)))
(when (< new-a-i 0.0d0)
(setf (aref alpha-array i) 0.0d0)
(setf (aref alpha-array j) sum)))))
;;update gradient
(let ((kernel-vec-i (get-cached-values kernel-cache training-vector i training-size kernel-function))
(kernel-vec-j (get-cached-values kernel-cache training-vector j training-size kernel-function)))
(declare (type dvec kernel-vec-i kernel-vec-j))
#+nil
(let ((delta-a-i (- (aref alpha-array i) old-a-i))
(delta-a-j (- (aref alpha-array j) old-a-j)))
(declare (type double-float delta-a-i delta-a-j))
(loop
for k of-type array-index below training-size
as point-k of-type dvec = (svref training-vector k)
as y-k of-type double-float = (aref point-k label-index)
as s-i of-type double-float = (* y-k y-i)
as s-j of-type double-float = (* y-k y-j)
;; branch is slower
;; if (and (/= 0.0d0 delta-a-i) (/= 0.0d0 delta-a-j))
do (incf (aref gradient-array k)
(+ (* s-i (aref kernel-vec-i k) delta-a-i)
(* s-j (aref kernel-vec-j k) delta-a-j)))))
(update-gradient training-vector kernel-vec-i kernel-vec-j i j old-a-i old-a-j)
)))))))))
(defun select-i (training-vector c)
(declare (type simple-vector training-vector)
(type double-float c))
(let ((training-size *training-size*)
(label-index *label-index*)
(alpha-array *alpha-array*)
(gradient-array *gradient-array*)
(i -1)
(g-max most-negative-double-float))
(declare (type fixnum i training-size label-index)
(type dvec alpha-array gradient-array)
(type double-float g-max))
(loop
for k of-type array-index below training-size
as y-k of-type double-float = (aref (the dvec (svref training-vector k)) label-index)
as a-k of-type double-float = (aref alpha-array k)
as g-k of-type double-float = (aref gradient-array k)
as g-temp of-type double-float = (- (* y-k g-k))
if (and (>= g-temp g-max)
(or (and (= y-k 1.0d0) (< a-k c))
(and (= y-k -1.0d0) (> a-k 0d0))))
do (progn
(setf g-max g-temp)
(setf i k)))
(values i g-max)))
(defun select-j (training-vector kernel-function c weight i g-max)
(declare (type simple-vector training-vector)
(type kernel-function kernel-function)
(type double-float c weight g-max)
(type array-index i)
(ignorable kernel-function))
(let* ((training-size *training-size*)
(label-index *label-index*)
(alpha-array *alpha-array*)
(gradient-array *gradient-array*)
(tau *tau*)
(j -1)
(g-min most-positive-double-float)
(obj-min most-positive-double-float)
(kernel-cache *kernel-cache*)
(kernel-vec-d *kernel-vec-d*)
(kernel-vec-i (get-cached-values kernel-cache training-vector i training-size kernel-function)))
(declare (type fixnum i j training-size label-index)
(type dvec alpha-array gradient-array kernel-vec-i kernel-vec-d)
(type double-float tau g-max g-min obj-min)
(dynamic-extent g-min obj-min))
(loop
for k of-type array-index below training-size
as y-k of-type double-float = (aref (the dvec (svref training-vector k)) label-index)
as a-k of-type double-float = (aref alpha-array k)
as g-k of-type double-float = (aref gradient-array k)
as g-temp of-type double-float = (- (* y-k g-k))
with a of-type double-float = 0.0d0
with b of-type double-float = 0.0d0
if (or (and (= y-k 1.0d0) (> a-k 0.0d0))
(and (= y-k -1.0d0) (< a-k (* weight c))))
do (setf b (- g-max g-temp))
(when (> b 0.0d0)
(setf a (eta-cached kernel-vec-i kernel-vec-d i k))
(when (<= a 0.0d0)
(setf a tau))
(let ((temp (/ (- (* b b)) a)))
(declare (type double-float temp))
(when (<= temp obj-min)
(setf obj-min temp)
(setf j k))))
(when (<= g-temp g-min)
(setf g-min g-temp)))
(values j g-min)))
(defun working-set-selection3 (training-vector kernel-function c weight)
(declare (type simple-vector training-vector)
(type kernel-function kernel-function)
(type double-float c weight))
(let ((i -1)
(j -1)
(eps *eps*)
(tau *tau*)
(training-size *training-size*)
(label-index *label-index*)
(alpha-array *alpha-array*)
(gradient-array *gradient-array*))
(declare (type fixnum i j)
(type double-float eps tau)
(type fixnum training-size)
(type array-index label-index)
(type dvec alpha-array gradient-array))
(let ((g-max most-negative-double-float)
(g-min most-positive-double-float))
(declare (type double-float g-max g-min))
;;select i
;; (multiple-value-setq (i g-max) (select-i training-vector c))
(loop
for k of-type array-index below training-size
as y-k of-type double-float = (aref (the dvec (svref training-vector k)) label-index)
as a-k of-type double-float = (aref alpha-array k)
as g-k of-type double-float = (aref gradient-array k)
as g-temp of-type double-float = (- (* y-k g-k))
if (and (>= g-temp g-max)
(or (and (= y-k 1.0d0) (< a-k c))
(and (= y-k -1.0d0) (> a-k 0.0d0))))
do (progn
(setf g-max g-temp)
(setf i k)))
;;select j
;; (multiple-value-setq (j g-min) (select-j training-vector kernel-function c weight i g-max))
(let ((obj-min most-positive-double-float))
(declare (type double-float obj-min))
(let* ((kernel-cache *kernel-cache*)
(kernel-vec-d *kernel-vec-d*)
(kernel-vec-i (get-cached-values kernel-cache training-vector i training-size kernel-function)))
(declare (type dvec kernel-vec-i kernel-vec-d))
(loop
for k of-type array-index below training-size
as y-k of-type double-float = (aref (the dvec (svref training-vector k)) label-index)
as a-k of-type double-float = (aref alpha-array k)
as g-k of-type double-float = (aref gradient-array k)
as g-temp of-type double-float = (- (* y-k g-k))
with a of-type double-float = 0.0d0
with b of-type double-float = 0.0d0
if (or (and (= y-k 1.0d0) (> a-k 0.0d0))
(and (= y-k -1.0d0) (< a-k (* weight c))))
do (setf b (- g-max g-temp))
(when (> b 0.0d0)
(setf a (eta-cached kernel-vec-i kernel-vec-d i k))
(when (<= a 0.0d0)
(setf a tau))
(let ((temp (/ (- (* b b)) a)))
(declare (type double-float temp))
(when (<= temp obj-min)
(setf obj-min temp)
(setf j k))))
(when (<= g-temp g-min)
(setf g-min g-temp)))))
(when (< (- g-max g-min) eps)
(return-from working-set-selection3 (values -1 -1)))
(values i j))))
)
(defun compute-b (training-vector kernel-function c weight alpha-array)
(declare (type simple-vector training-vector)
(type dvec alpha-array)
(type kernel-function kernel-function)
(type double-float c weight)
(ignorable kernel-function))
(let ((label-index (1- (length (aref training-vector 0))))
(n (length alpha-array)))
(declare (type fixnum label-index n))
(let ((result 0.0d0))
(declare (type double-float result))
(loop
for i of-type fixnum below n
as alpha-i of-type double-float = (aref alpha-array i)
as y-i of-type double-float = (aref (the dvec (svref training-vector i)) label-index)
as c-i of-type double-float = (if (plusp y-i) c (* weight c))
with count = 0
if (< 0.0d0 alpha-i c-i)
do (incf count 1)
(incf result
(- y-i
(let ((result2 0.0d0))
(declare (type double-float result2))
(loop
for j of-type fixnum below n
as alpha-j of-type double-float = (aref alpha-array j)
as y-j of-type double-float = (aref (the dvec (svref training-vector j)) label-index)
unless (= 0.0d0 alpha-j)
do (incf result2
(* alpha-j y-j
(call-kernel-function kernel-function
(svref training-vector i)
(svref training-vector j))))
finally (return result2)))))
finally (return (/ result count))))))
;;for check
(defun print-b (training-vector kernel-function c weight alpha-array)
(declare (ignorable kernel-function))
(let ((label-index (1- (length (aref training-vector 0)))))
(loop
for i below (length training-vector)
as a-i = (aref alpha-array i)
as point-i = (svref training-vector i)
as y-i = (aref point-i label-index)
as c-i of-type double-float = (if (plusp y-i) c (* weight c))
if (< 0.0d0 a-i c-i)
do (print (- y-i
(loop
for j below (length training-vector)
as a-j = (aref alpha-array j)
as y-j = (aref (aref training-vector j) label-index)
unless (= 0.0d0 a-j)
sum (* a-j y-j
(call-kernel-function kernel-function
(svref training-vector i)
(svref training-vector j)))))))))
(defun make-linear-kernel ()
(define-kernel-function (z-i z-j :linear)
(loop
for k of-type array-index below (1- (length z-i))
sum (* (aref z-i k) (aref z-j k))
into result of-type double-float
finally (return result))))
(defun make-rbf-kernel (&key gamma)
(let ((gamma (coerce gamma 'double-float)))
(declare (type double-float gamma))
(assert (> gamma 0.0d0))
(define-kernel-function (z-i z-j :rbf)
(loop
for k of-type array-index below (1- (length z-i))
sum (expt (- (aref z-i k) (aref z-j k)) 2)
into result of-type double-float
finally (return (d-exp (* (- gamma) result)))))))
(defun make-polynomial-kernel (&key gamma r d)
(assert (> gamma 0.0d0))
(assert (and (integerp d) (> d 0)))
(let ((gamma (coerce gamma 'double-float))
(r (coerce r 'double-float))
(d (coerce d 'double-float)))
(declare (type double-float gamma r d))
(let ((linear-kernel (make-linear-kernel)))
(define-kernel-function (z-i z-j :polynomial)
(d-expt (the (double-float 0d0)
(+ (* gamma (call-kernel-function-uncached linear-kernel z-i z-j)) r)) d)))))
;;for comparison
(declaim (inline sign))
#+allegro
(eval-when (:compile-toplevel :load-toplevel :execute)
(setf (get 'sign 'sys::immed-args-call)
'((double-float) double-float)))
(defun sign (x)
(declare (type double-float x))
(if (>= x 0.0d0)
1.0d0
-1.0d0))
(defun make-discriminant-function0 (training-vector kernel-function alpha-array b)
(declare (ignorable kernel-function))
(let ((label-index (1- (length (svref training-vector 0)))))
(lambda (point)
(sign (+ (loop
for i below (length alpha-array)
as a-i = (aref alpha-array i)
unless (= 0.0d0 a-i)
sum (* a-i
(aref (svref training-vector i) label-index)
(call-kernel-function-uncached kernel-function (svref training-vector i) point)))
b)))))
(defun make-discriminant-function (training-vector kernel-function alpha-array b)
(declare (type simple-vector training-vector)
(type kernel-function kernel-function)
(type dvec alpha-array)
(type double-float b)
(ignorable kernel-function))
(let ((label-index (1- (length (svref training-vector 0)))))
(declare (type fixnum label-index))
(lambda (point)
(sign (+ (let ((result 0.0d0))
(declare (type double-float result))
(loop
for i of-type fixnum below (length alpha-array)
as a-i of-type double-float = (aref alpha-array i)
unless (= 0.0d0 a-i)
do (incf result
(* a-i
(aref (the dvec (svref training-vector i)) label-index)
(call-kernel-function-uncached kernel-function (svref training-vector i) point))))
result)
b)))))
(defun make-svm-learner (training-vector kernel-function &key c (weight 1.0d0) file-name external-format cache-size-in-MB)
(assert (plusp c))
(assert (plusp weight))
(let* ((c (coerce c 'double-float))
(weight (coerce weight 'double-float))
(alpha-array (qp-solver training-vector kernel-function c weight (* (or cache-size-in-MB 100) 1024 1024)))
(b (compute-b training-vector kernel-function c weight alpha-array)))
(when (and file-name external-format)
(with-open-file (out file-name
:external-format external-format
:direction :output
:if-exists :supersede
:if-does-not-exist :create)
(write (list training-vector alpha-array b) :stream out)))
(make-discriminant-function training-vector kernel-function alpha-array b)))
(defun load-svm-learner (file-name kernel-function &key external-format)
(let* ((material-list
(with-open-file (in file-name :external-format external-format :direction :input)
(read in)))
(training-vector (first material-list))
(alpha-array (specialize-vec (second material-list)))
(b (third material-list)))
(loop
for i of-type fixnum below (length training-vector)
do (setf (aref training-vector i) (specialize-vec (aref training-vector i))))
(make-discriminant-function training-vector kernel-function alpha-array b)))
(defun svm-validation (svm-learner test-vector)
(let* ((n (length test-vector))
(label-index (1- (length (svref test-vector 0))))
(sum-up-list
(sum-up (loop for i of-type fixnum below n
collect (cons (funcall svm-learner (svref test-vector i))
(aref (the dvec (svref test-vector i)) label-index))))))
(values sum-up-list (accuracy sum-up-list))))
(defun accuracy (sum-up-list)
(loop for obj in sum-up-list
as type = (first obj)
sum (cdr obj) into m
if (= (car type) (cdr type))
sum (cdr obj) into n
finally (return (* 100.0d0 (/ n m)))))
;;for test
(defun sample-vector (n)
(let ((x (make-array n :initial-element 0.0d0 :element-type 'double-float)))
(loop for i below n
do (setf (aref x i) (coerce (random 10) 'double-float))
finally (return x))))
(defun make-one-class-svm-kernel (&key gamma)
(declare (type double-float gamma))
(assert (> gamma 0.0d0))
(define-kernel-function (z-i z-j :rbf)
(loop
for k of-type array-index below (length z-i)
sum (expt (- (aref z-i k) (aref z-j k)) 2)
into result of-type double-float
finally (return (d-exp (* (- gamma) result))))))