-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathts-stat.cl
executable file
·487 lines (474 loc) · 22.2 KB
/
ts-stat.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
(defpackage :time-series-statistics
(:use :cl :hjs.learn.read-data :hjs.util.meta :hjs.util.vector
:hjs.util.matrix :statistics :hjs.learn.vars
:ts-util :ts-read-data :fft)
(:nicknames :ts-stat)
(:export
#:lag
#:diff
#:ts-ratio
#:ts-log ; include logit transformation
#:ts-min
#:ts-max
#:ts-mean
#:ts-median
#:ts-demean
#:ts-covariance
#:ts-correlation
#:ma
#:acf
#:ccf
#:periodgram))
(in-package :time-series-statistics)
(defmethod lag ((d time-series-dataset) &key (k 1))
(assert (integerp k))
(let* ((data (copy-ts d))
(freq (ts-freq data))
(start (tf-incl (ts-start data) (- k) :freq freq))
(end (tf-incl (ts-end data) (- k) :freq freq)))
(setf
(ts-start data) start
(ts-end data) end)
(loop for point across (ts-points data)
for i from 0
as tf = (tf-incl start i :freq freq)
do (setf (ts-p-time point) (first tf)
(ts-p-freq point) (second tf)))
data))
(defmethod diff ((d time-series-dataset) &key (lag 1)
(differences 1))
(assert (every #'integerp `(,lag ,differences)))
(assert (plusp differences))
(if (= differences 1)
(ts- d (lag d :k (- lag)))
(diff (ts- d (lag d :k (- lag))) :lag lag :differences (1- differences))
))
(defmethod ts-ratio ((d time-series-dataset) &key (lag 1))
(unless lag
(setq lag (ts-freq d)))
(compose-ts (merge-ts d (lag d :k (- lag))) :composer #'/
:column-name (format nil "ratio (lag: ~A)" lag)))
(defmethod ts-log ((d time-series-dataset) &key (logit-transform nil)
(log-base (exp 1)))
(let ((ts (copy-ts d)))
(loop for point across (ts-points ts)
if logit-transform
do (setf (ts-p-pos point)
(map 'dvec #'(lambda (val)
(assert (<= 0 val 1))
(cond ((= val 1)
most-positive-double-float)
((= val 0)
most-negative-double-float)
(t
(log (/ val (- 1 val)) log-base))))
(ts-p-pos point)))
else
do (setf (ts-p-pos point)
(map 'dvec #'(lambda (val) (dfloat (log val log-base)))
(ts-p-pos point))))
ts))
(defmethod ts-min ((d time-series-dataset))
(with-accessors ((dims dataset-dimensions)
(points ts-points)) d
(assert (>= (length points) 1))
(map 'vector #'(lambda (seq)
(apply #'min (coerce seq 'list)))
(transposev (map 'vector #'ts-p-pos points)))))
(defmethod ts-max ((d time-series-dataset))
(with-accessors ((dims dataset-dimensions)
(points ts-points)) d
(assert (>= (length points) 1))
(map 'vector #'(lambda (seq)
(apply #'max (coerce seq 'list)))
(transposev (map 'vector #'ts-p-pos points)))))
(defmethod ts-mean ((d time-series-dataset))
(with-accessors ((dims dataset-dimensions)
(points ts-points)) d
(assert (>= (length points) 1))
(mean-points (map 'vector #'ts-p-pos points))))
(defmethod ts-median ((d time-series-dataset))
(with-accessors ((dims dataset-dimensions)
(points ts-points)) d
(assert (>= (length points) 1))
(map 'vector (lambda (seq) (median seq))
(transposeV (map 'vector #'ts-p-pos points)))))
(defmethod ts-stat ((d time-series-dataset))
(with-accessors ((points ts-points)) d
(map 'list (lambda (seq)
(loop with min = most-positive-double-float
with max = most-negative-double-float
with x = 0d0
with x^2 = 0d0
for val double-float across seq
do (setf x (+fl x val) x^2 (+fl (d-expt val 2d0) x^2))
if (> val max) do (setf max val)
else if (< val min) do (setf min val)
finally (return (let* ((n (length seq))
(mean (/ x n))
(cov (- (/ x^2 n) (d-expt mean 2d0))))
(list min max mean
(if (plusp cov) (sqrt cov) 0d0)
(median seq))))))
(transposeV (map 'vector #'ts-p-pos points)))))
(defmethod ts-demean ((d time-series-dataset))
(with-accessors ((dims dataset-dimensions)
(ps ts-points)
(freq ts-freq)
(start ts-start)
(end ts-end)
(label-name time-label-name)) d
(assert (>= (length ps) 1))
(let ((time-label-array (map 'vector #'ts-p-label ps))
(mean (ts-mean d)))
(make-constant-time-series-data
(map 'list #'dimension-name dims)
(map 'vector
#'(lambda (p)
(let ((dvec (make-dvec (length dims))))
(loop for i below (length dims)
do (setf (aref dvec i)
(coerce (- (aref (ts-p-pos p) i) (aref mean i)) 'double-float)))
dvec)) ps)
:start start :end end :freq freq
:time-labels time-label-array :time-label-name label-name))))
(defmethod ts-covariance ((d time-series-dataset) &key (k 0) (demean t))
(assert (and (>= k 0) (> (length (ts-points d)) k)))
(let* ((mu (ts-mean d))
(dim (length (dataset-dimensions d)))
(1/n (/ 1.0 (length (ts-points d))))
(lag-d
(sub-ts (lag d :k (- k)) :end (ts-end d)))
(d
(sub-ts d :start (tf-incl (ts-start d) k :freq (ts-freq d))))
(points-1 (transposeV
(map 'vector
(lambda (p) (if demean (v- p mu (make-dvec dim))
(specialize-vec p)))
(map 'vector #'ts-p-pos (ts-points d)))))
(points-2 (transposeV
(map 'vector
(lambda (p) (if demean (v- p mu (make-dvec dim))
(specialize-vec p)))
(map 'vector #'ts-p-pos (ts-points lag-d)))))
(result (make-array (list dim dim) :element-type 'double-float)))
(declare (type (simple-array dvec (*)) points-1 points-2))
(do-vec (p1 points-1 :type dvec :index-var ix)
(do-vec (p2 points-2 :type dvec :index-var iy)
(do-vec (p1-val p1 :type double-float :setf-var p1v)
(when (> *epsilon* (abs p1-val)) (setf p1v 0.0d0)))
(do-vec (p2-val p2 :type double-float :setf-var p2v)
(when (> *epsilon* (abs p2-val)) (setf p2v 0.0d0)))
(setf (aref result ix iy)
(* (inner-product p1 p2) 1/n))))
result))
(defmethod ts-correlation ((d time-series-dataset) &key (k 0))
(assert (and (>= k 0) (> (length (ts-points d)) k)))
(let* ((C-k (ts-covariance d :k k))
(C-0 (ts-covariance d :k 0)))
(loop for i below (length (dataset-dimensions d))
do (loop for j below (length (dataset-dimensions d))
do (setf (aref C-k i j)
(/ (aref C-k i j)
(sqrt (* (aref C-0 i i) (aref C-0 j j)))))))
C-k))
;;; moving-average
(defmethod ma ((d time-series-dataset) &key (k 5) weight)
(with-accessors ((dims dataset-dimensions)
(ps ts-points)
(start ts-start)
(end ts-end)
(freq ts-freq)) d
(assert (and (= (length dims) 1) (integerp k)))
(assert (and (listp weight) (every #'numberp weight)))
(let ((2k+1 (1+ (* 2 k))))
(setq weight
(when weight
(let ((total (apply #'+ weight)))
(assert (/= total 0))
(assert (= 2k+1 (length weight)))
(mapcar #'(lambda (val) (/ val total)) weight))))
(flet ((calc-ma (seq pos)
(let* ((s-p (max 0 (- pos k)))
(e-p (min (length seq) (+ pos k 1)))
(w-s-p (- (floor 2k+1 2) (- pos s-p)))
(w-e-p (+ (floor 2k+1 2) (- e-p pos)))
(target (subseq seq s-p e-p))
(weight (when weight (subseq weight w-s-p w-e-p)))
(w*t (if weight (map 'list #'* target weight)
(map 'list #'(lambda (val) (/ val (length target))) target))))
(coerce
(apply #'+ w*t) 'double-float))))
(let* ((seq (map 'vector #'(lambda (p)
(aref (ts-p-pos p) 0)) ps))
(ma-seq (coerce
(loop for pos below (length seq)
collect (calc-ma seq pos)) 'vector))
(data (coerce
(loop for val across ma-seq
collect (make-dvec 1 val))
'vector)))
(make-constant-time-series-data
(map 'list #'dimension-name dims)
data :start start :end end :freq freq))))))
;;; auto-correlation or auto-covariance function
(defmethod acf ((d time-series-dataset) &key (type :correlation)
(plot nil)
(print t)
max-k)
(with-accessors
((freq ts-freq) (ps ts-points) (start ts-start)
(end ts-end) (dims dataset-dimensions)) d
(unless max-k
(setq max-k
(round
(* 10 (log (length ps) 10)))))
(assert (> (length ps) max-k))
(let* ((mat-list
(loop for k to max-k
collect
(case type
(:correlation
(ts-correlation d :k k))
(:covariance
(ts-covariance d :k k))
(t (error "Unknow type: ~A" type)))))
(params (map 'list #'dimension-name dims))
(len (length dims))
(results
(loop for param in params
for i from 0
collect
(progn
(when print
(princ (format nil "~&~A~%~{~A~^~T~}~%" param params)))
(loop for mat in mat-list
for k from 0
with seq-lag-list = (loop repeat len collect (make-list 2))
as seq = (loop for j below len
as val = (aref mat j i)
collect (prog1 val
(push val (nth 0 (nth j seq-lag-list)))))
as lag-seq = (loop for j below len
with lag = (/ k freq)
as val = (if (>= i j) lag (- lag))
collect (prog1 val
(push val (nth 1 (nth j seq-lag-list)))))
when print
do (princ (format nil "~{~,3F (~,3F)~^~T~}~%"
(mapcan #'list seq lag-seq)))
finally (return seq-lag-list))))))
(cond (plot
(let ((f-name (loop for i from 1
as f-name = (format nil "acf-~A.eps" i)
when (not (probe-file f-name))
do (return f-name))))
(with-r
(format *r-stream* "postscript(\"~A\", height=9, width=14, pointsize=15)~%" f-name)
(format *r-stream* "par(mfcol=c(~A,~A))~%" len len)
(loop for param-1 in params
for result in results
do (loop for seq-lag in result
for param-2 in params
do (format
*r-stream*
"plot(c(~{~,3F~^,~}),c(~{~,3F~^,~}),type=\"h\",main=\"~A : ~A\",xlab=\"lag\",ylab=\"ACF\")~%"
(nth 1 seq-lag) (nth 0 seq-lag) param-2 param-1)))
(format *r-stream* "dev.off()~%"))
(open-eps-file f-name)))
(print nil)
(t results)))))
(defun ccf (d1 d2 &key (type :correlation) (plot nil) (print t) max-k)
(check-type d1 time-series-dataset)
(check-type d2 time-series-dataset)
(assert (= (ts-freq d1) (ts-freq d2)))
(assert (and (= 1 (length (dataset-dimensions d1))) (= 1 (length (dataset-dimensions d2)))))
(let* ((d (merge-ts d1 d2)))
(with-accessors
((freq ts-freq) (ps ts-points) (start ts-start)
(end ts-end) (dims dataset-dimensions)) d
(assert (> (length ps) 0))
(unless max-k
(setq max-k
(round
(* 10 (log (length ps) 10)))))
(let* ((mat-list
(loop for k to max-k
collect (case type
(:correlation (ts-correlation d :k k))
(:covariance (ts-covariance d :k k))
(t (error "Unknow type: ~A" type)))))
(results
(progn
(when print
(princ (format nil "~&~{~A~^ : ~}~%" (map 'list #'dimension-name dims))))
(loop for mat in mat-list
for k to max-k
with seq-lag-posi = (make-list 2)
with seq-lag-nega = (make-list 2)
do (if (= k 0)
(progn (push (aref mat 0 1) (nth 0 seq-lag-posi))
(push 0 (nth 1 seq-lag-posi)))
(progn (push (aref mat 0 1) (nth 0 seq-lag-posi))
(push (aref mat 1 0) (nth 0 seq-lag-nega))
(push (/ k freq) (nth 1 seq-lag-posi))
(push (- (/ k freq)) (nth 1 seq-lag-nega))))
finally (let ((results (mapcan #'(lambda (seq1 seq2)
`(,(append seq1 (reverse seq2))))
seq-lag-nega seq-lag-posi)))
(when print
(princ (format nil "~&~{~,3F (~,3F)~^~%~}"
(mapcan #'list (first results) (second results)))))
(return results))))))
(cond (plot
(let ((f-name (loop for i from 1
as f-name = (format nil "ccf-~A.eps" i)
when (not (probe-file f-name))
do (return f-name))))
(with-r
(format *r-stream* "postscript(\"~A\", height=9, width=14, pointsize=15)~%" f-name)
(format *r-stream*
"plot(c(~{~,3F~^,~}),c(~{~,3F~^,~}),type=\"h\",main=\"~{~A~^ : ~}\",xlab=\"lag\",ylab=\"CCF\")~%"
(second results) (first results) (map 'list #'dimension-name dims))
(format *r-stream* "dev.off()~%"))
(open-eps-file f-name)))
(print nil)
(t results))))))
;;; calculate periodgram
(defmethod periodgram ((d time-series-dataset) &key step (print t) (plot nil) (log t)
(smoothing :raw) ; :mean :hanning :hamming
)
(with-accessors ((dims dataset-dimensions) (pts ts-points)
(st ts-start) (ed ts-end) (freq ts-freq)) d
(unless step
(setq step (length pts)))
(assert (> step 1))
(assert (>= (length pts) step))
(assert (= 1 (length dims)))
(let* ((periodgram
(cond ((or (eq smoothing :raw) (eq smoothing :mean))
(when (eq smoothing :raw)
(setq step (length pts)))
(let* ((sub-ts-ds (loop repeat (floor (length pts) step)
with start = st
as end = (tf-incl start (1- step) :freq freq)
collect (prog1
(sub-ts d :start start :end end)
(setq start end))))
(sub-periodgrams (loop for ts-d in sub-ts-ds
collect (periodgram-fft ts-d)))
(m (length (car sub-periodgrams)))
(n/l (length sub-ts-ds)))
(loop for i below m
as sp-freq = (/ i (* 2 (1- m)))
as sp-val = (/ (loop for p in sub-periodgrams
sum (nth i p)) n/l)
collect sp-freq into freq-list
collect (if log (log sp-val) sp-val) into val-list
finally (return `(,freq-list ,val-list)))))
((or (eq smoothing :hanning) (eq smoothing :hamming))
(unless step
(setq step (* 2 (round (sqrt (length pts))))))
(assert (>= (length pts) step))
(let* ((l/2 (floor (/ step 2)))
(pj-list
(loop for j from 0 to l/2
with c_0 = (aref (ts-covariance d :k 0) 0 0)
as fj = (/ j step)
as pj = (+ c_0 (* 2
(loop for k from 1 to (1- step)
as c_k = (aref (ts-covariance d :k k) 0 0)
sum (* c_k (cos (* 2 pi k fj))))))
collect pj)))
(loop for j from 0 to l/2
as sp-freq = (/ j step)
as sp-val = (loop for i from (1- j) to (1+ j)
for w in (case smoothing
(:hanning '(0.25d0 0.5d0 0.25d0))
(:hamming '(0.23d0 0.54d0 0.23d0)))
sum (cond ((minusp i)
(* w (nth (- i) pj-list)))
((= i (1+ l/2))
(* w (nth (1- l/2) pj-list)))
(t (* w (nth i pj-list)))))
collect sp-freq into freq-list
collect (if log (log sp-val) sp-val) into val-list
finally (return `(,freq-list ,val-list)))))
(t (error "invalid :smoothing specifier | ~A" smoothing)))))
(when print
(princ (if log (format nil "Frequency | log P(f)~%")
(format nil "Frequency | P(f)~%")))
(loop for sp-freq in (cdr (first periodgram)) ; avoid freq 0
for sp-val in (cdr (second periodgram))
do (princ (format nil "~,8F | ~,8F~%" sp-freq sp-val))))
(cond (plot
(let ((f-name (loop for i from 1
as f-name = (format nil "period-~A.eps" i)
when (not (probe-file f-name))
do (return f-name))))
(with-r
(format *r-stream*
"postscript(\"~A\", height=9, width=14, pointsize=15)~%" f-name)
(format *r-stream*
"plot(c(~{~,3F~^,~}),c(~{~,3F~^,~}),type=\"h\",main=\"~A\",xlab=\"frequency\",ylab=\"~A\")~%"
(cdr (first periodgram)) (cdr (second periodgram))
(dimension-name (aref dims 0))
(if log "log P(f)" "P(f)"))
(format *r-stream* "dev.off()~%"))
(open-eps-file f-name)))
(print nil)
(t periodgram)))))
;;; calculate periodgram by fft
(defmethod periodgram-fft ((d time-series-dataset))
(with-accessors ((dims dataset-dimensions)
(pts ts-points)) d
(assert (= 1 (length dims)))
(let* ((extended-pts (make-expt-array
2 (map 'vector #'(lambda (point)
(aref (ts-p-pos point) 0))
pts)))
(four1-pts (make-array
(* 2 (length extended-pts))
:element-type 'double-float
:initial-contents
(loop for val across extended-pts
append `(,(coerce (realpart val) 'double-float)
,(coerce (imagpart val) 'double-float)))))
(n (length extended-pts)))
(four1 four1-pts n)
(let* ((four1-pts (multiple-value-list (split-seq-odd-even four1-pts))))
(loop for r-val in (first four1-pts)
for i-val in (second four1-pts)
for i from 0
as p = (/ (+ (expt r-val 2) (expt i-val 2)) n)
while (>= (/ n 2) i)
collect p)))))
;;; sample time-series-dataset
#||
(defparameter ukgas
(time-series-data
(read-data-from-file "sample/UKgas.sexp")
:range '(1) :time-label 0
:start 1960 :frequency 4))
(defparameter useco
(time-series-data
(read-data-from-file "sample/USeconomic.sexp")))
(defparameter tokyo
(time-series-data
(read-data-from-file "sample/tokyo-temperature.sexp")))
(defparameter sunspot
(time-series-data (read-data-from-file "sample/sunspot.sexp")
:range '(1) :time-label 0))
(defparameter whard
(time-series-data (read-data-from-file "sample/whard.sexp")
:frequency 12))
(defparameter food
(time-series-data (read-data-from-file "sample/bls-food.sexp")
:range '(1) :time-label 0 :frequency 12))
(defparameter msi
(time-series-data
(read-data-from-file
"sample/msi-access-stat/access-log-stat-0.sexp")
:range '(1) :start '(18 3) :frequency 24))
(export '(ukgas useco tokyo sunspot whard food msi))
||#