Latest releases: [1.7.0] - 2024-11-22 and [1.6.0] - 2024-10-25
-
package
coq-mathcomp-reals
depending oncoq-mathcomp-classical
with filesconstructive_ereal.v
reals.v
real_interval.v
signed.v
itv.v
prodnormedzmodule.v
nsatz_realtype.v
all_reals.v
-
package
coq-mathcomp-experimental-reals
depending oncoq-mathcomp-reals
with filesxfinmap.v
discrete.v
realseq.v
realsum.v
distr.v
-
package
coq-mathcomp-reals-stdlib
depending oncoq-mathcomp-reals
with fileRstruct.v
-
package
coq-mathcomp-analysis-stdlib
depending oncoq-mathcomp-analysis
andcoq-mathcomp-reals-stdlib
with files- new file
Rstruct_topology.v
showcase/uniform_bigO.v
- new file
-
in file
mathcomp_extra.v
:- definition
sigT_fun
- definition
idempotent_fun
- definition
-
in
boolp.v
:- lemmas
existT_inj1
,surjective_existT
- lemma
existT_inj2
- new lemmas
uncurryK
, andcurryK
- lemmas
-
new file
topology_theory/one_point_compactification.v
:- definitions
one_point_compactification
, andone_point_nbhs
. - lemmas
one_point_compactification_compact
,one_point_compactification_some_nbhs
,one_point_compactification_some_continuous
,one_point_compactification_open_some
,one_point_compactification_weak_topology
, andone_point_compactification_hausdorff
.
- definitions
-
new file
topology_theory/sigT_topology.v
:- definition
sigT_nbhs
. - lemmas
sigT_nbhsE
,existT_continuous
,existT_open_map
,existT_nbhs
,sigT_openP
,sigT_continuous
,sigT_setUE
, andsigT_compact
.
- definition
-
in file
topology_theory/product_topology.v
:- lemmas
swap_continuous
,prodA_continuous
, andprodAr_continuous
.
- lemmas
-
in file
topology_theory/order_topology.v
:- lemmas
min_continuous
,min_fun_continuous
,max_continuous
, andmax_fun_continuous
.
- lemmas
-
in file
topology_theory/weak_topology.v
:- lemma
continuous_comp_weak
- lemma
-
in
topology_theory/topology_structure.v
:- definitions
regopen
,regclosed
- lemmas
closure_setC
,interiorC
,closureU
,interiorU
,closureEbigcap
,interiorEbigcup
,closure_open_regclosed
,interior_closed_regopen
,closure_interior_idem
,interior_closure_idem
- mixin
isContinuous
, typecontinuousType
, structureContinuous
- lemma
continuousEP
- definition
mkcts
- definitions
-
in file
topology_theory/subspace_topology.v
:- lemmas
continuous_subspace_setT
,nbhs_prodX_subspace_inE
, andcontinuous_subspace_prodP
. - type
continuousFunType
, HB structureContinuousFun
- lemmas
-
in file
topology_theory/subtype_topology.v
:- lemmas
subspace_subtypeP
,subspace_sigL_continuousP
,subspace_valL_continuousP'
,subspace_valL_continuousP
,sigT_of_setXK
,setX_of_sigTK
,setX_of_sigT_continuous
, andsigT_of_setX_continuous
.
- lemmas
-
in file
separation_axioms.v
:- lemmas
compact_normal_local
, andcompact_normal
. - lemma
sigT_hausdorff
.
- lemmas
-
in file
function_spaces.v
:- definition
eval
- lemmas
continuous_curry_fun
,continuous_curry_cvg
,eval_continuous
, andcompose_continuous
- definition
-
new file
tvs.v
:- HB structures
NbhsNmodule
,NbhsZmodule
,NbhsLmodule
,TopologicalNmodule
,TopologicalZmodule
- notation
topologicalLmoduleType
, HB structureTopologicalLmodule
- HB structures
UniformZmodule
,UniformLmodule
- definition
convex
- mixin
Uniform_isTvs
- type
tvsType
, HB structureTvs
- HB factory
TopologicalLmod_isTvs
- lemma
nbhs0N
- lemma
nbhsN
- lemma
nbhsT
- lemma
nbhsB
- lemma
nbhs0Z
- lemma
nbhZ
- HB structures
-
in file
normedtype.v
:- definition
type
(in modulecompletely_regular_uniformity
) - lemmas
normal_completely_regular
,one_point_compactification_completely_reg
,nbhs_one_point_compactification_weakE
,locally_compact_completely_regular
, andcompletely_regular_regular
. - lemmas
near_in_itvoy
,near_in_itvNyo
- definition
-
in
measure.v
:- lemma
countable_measurable
- lemma
-
in
realfun.v
:- lemma
cvgr_dnbhsP
- definitions
prodA
, andprodAr
- lemmas
prodAK
,prodArK
, andswapK
- lemma
-
new file
homotopy_theory/path.v
:- definitions
reparameterize
,mk_path
, andchain_path
. - lemmas
path_eqP
, andchain_path_cts_point
.
- definitions
-
new file
homotopy_theory/wedge_sigT.v
:- definitions
wedge_rel
,wedge
,wedge_lift
,pwedge
. - lemmas
wedge_lift_continuous
,wedge_lift_nbhs
,wedge_liftE
,wedge_openP
,wedge_pointE
,wedge_point_nbhs
,wedge_nbhs_specP
,wedgeTE
,wedge_compact
,wedge_connected
. - definitions
wedge_fun
, andwedge_prod
. - lemmas
wedge_fun_continuous
,wedge_lift_funE
,wedge_fun_comp
,wedge_prod_pointE
,wedge_prod_inj
,wedge_prod_continuous
,wedge_prod_open
,wedge_hausdorff
, andwedge_fun_joint_continuous
. - definition
bpwedge_shared_pt
. - notations
bpwedge
, andbpwedge_lift
.
- definitions
-
new file
homotopy_theory/homotopy.v
-
moved from
Rstruct.v
toRstruct_topology.v
- lemmas
continuity_pt_nbhs
,continuity_pt_cvg
,continuity_ptE
,continuity_pt_cvg'
,continuity_pt_dnbhs
andnbhs_pt_comp
- lemmas
-
moved from
real_interval.v
tonormedtype.v
- lemmas
set_itvK
,RhullT
,RhullK
,set_itv_setT
,Rhull_smallest
,le_Rhull
,neitv_Rhull
,Rhull_involutive
,disj_itv_Rhull
- lemmas
-
in
topology.v
:- lemmas
subspace_pm_ball_center
,subspace_pm_ball_sym
,subspace_pm_ball_triangle
,subspace_pm_entourage
turned into localLet
's
- lemmas
-
in file
normedtype.v
:- changed
completely_regular_space
to depend on uniform separators which removes the dependency onR
. The old formulation can be recovered easily withuniform_separatorP
. - HB structure
normedModule
now depends on a Tvs instead of a Lmodule - Factory
PseudoMetricNormedZmod_Lmodule_isNormedModule
becomesPseudoMetricNormedZmod_Tvs_isNormedModule
- Section
prod_NormedModule
now depends on anumFieldType
- changed
-
in
lebesgue_integral.v
:- structure
SimpleFun
now inside a moduleHBSimple
- structure
NonNegSimpleFun
now inside a moduleHBNNSimple
- lemma
cst_nnfun_subproof
has now a different statement - lemma
indic_nnfun_subproof
has now a different statement
- structure
- in
normedtype.v
:near_in_itv
->near_in_itvoo
- Section
regular_topology
tostandard_topology
- in
lebesgue_integral.v
:- generalized from
sigmaRingType
/realType
tosigmaRingType
/sigmaRingType
- mixin
isMeasurableFun
- structure
MeasurableFun
- definition
mfun
- lemmas
mfun_rect
,mfun_valP
,mfuneqP
- mixin
- generalized from
- in
topology_theory/topology_structure.v
:- lemma
closureC
- lemma
-
in
cardinality.v
:- lemma
cst_fimfun_subproof
- lemma
-
in
lebesgue_integral.v
:- definition
cst_mfun
- lemma
mfun_cst
- lemma
cst_mfun_subproof
(use lemmameasurable_cst
instead) - lemma
cst_nnfun_subproof
(turned into aLet
) - lemma
indic_mfun_subproof
(use lemmameasurable_fun_indic
instead)
- definition
-
new directory
theories/topology
with new files:topology.v
bool_topology.v
compact.v
connected.v
matrix_topology.v
nat_topology.v
order_topology.v
product_topology.v
pseudometric_structure.v
subspace_topology.v
supremum_topology.v
topology_structure.v
uniform_structure.v
weak_topology.v
num_topology.v
quotient_topology.v
-
in
exp.v
:- lemmas
cvgr_expR
,cvgn_expR
- lemmas
-
in
trigo.v
:- lemmas
derive1_atan
,lt_atan
,le_atan
,cvgy_atan
- lemmas
-
in
lebesgue_measure.v
:- lemmas
RintegralZl
,RintegralZr
,Rintegral_ge0
- lemmas
-
The file
topology.v
has been split into several files in the directorytopology_theory
. Unless stated otherwise, definitions, lemmas, etc. have been moved without changes. The same import will work as before,Require Import topology.v
. -
in
matrix_topology.v
(new file):- lemmas
mx_ball_center
,mx_ball_sym
,mx_ball_triangle
,mx_entourage
are nowLocal
- lemmas
-
in
weak_topology.v
(new file):- lemmas
wopT
,wopI
,wop_bigU
are nowLocal
- lemmas
-
in
supremum_topology.v
(new file):- lemmas
sup_ent_filter
,sup_ent_refl
,sup_ent_inv
,sup_ent_split
,sup_ent_nbhs
are nowLocal
- lemmas
-
The function
map_pair
was moved fromtopology.v
tomathcomp_extra.v
. -
in
forms.v
:- notation
'e_
- notation
-
in
lebesgue_integral.v
:- notation
\x
- notation
- in
lebesgue_measure.v
:EFin_measurable_fun
->measurable_EFinP
- in
num_topology.v
(new file):- lemma
nbhs0_lt
generalized fromrealType
torealFieldType
- lemma
- in
pseudometric_structure.v
(new file):- definition
cvg_toi_locally
(usecvgi_ballP
instead)
- definition
- file
topology.v
(contents now in directorytopology
)
-
in
mathcomp_extra.v
:- lemma
bij_forall
- lemma
-
in
classical_sets.v
:- lemma
not_setD1
- lemma
-
in file
classical_orders.v
(new file),- definitions
big_lexi_order
,same_prefix
,first_diff
,big_lexi_le
, andstart_with
. - lemmas
same_prefix0
,same_prefix_sym
,same_prefix_leq
,same_prefix_refl
,same_prefix_trans
,first_diff_sym
,first_diff_unique
,first_diff_SomeP
,first_diff_NoneP
,first_diff_lt
,first_diff_eq
,first_diff_dfwith
,big_lexi_le_reflexive
,big_lexi_le_anti
,big_lexi_le_trans
,big_lexi_le_total
,start_with_prefix
,leEbig_lexi_order
,big_lexi_order_prefix_lt
,big_lexi_order_prefix_gt
,big_lexi_order_between
, andbig_lexi_order_interval_prefix
.
- definitions
-
in
filter.v
(new file):- lemma
in_nearW
- lemma
-
in
topology.v
:- lemma
open_in_nearW
- lemma
-
new file
separation_axioms.v
-
in
normedtype.v
:- lemma
cvgyNP
- lemma
limf_esup_ge0
- lemma
nbhs_left_ltBl
- lemma
within_continuous_continuous
- lemma
-
in
sequences.v
:- lemma
nneseries_split_cond
- lemma
subset_lee_nneseries
- lemma
-
in
exp.v
:- lemma
expR_gt1Dx
- lemma
-
in
derive.v
:- lemma
exprn_derivable
- lemma
-
in
realfun.v
:- lemmas
cvg_pinftyP
,cvg_ninftyP
- lemmas
-
in
measure.v
:- lemma
measurable_fun_set1
- lemma
measurable_fun_set0
- lemma
-
in
lebesgue_measure.v
:- lemma
vitali_coverS
- lemma
vitali_theorem_corollary
- lemmas
measurable_fun_itv_co
,measurable_fun_itv_oc
,measurable_fun_itv_cc
- lemma
-
in
lebesgue_integral.v
:- lemma
integral_itv_bndoo
- lemma
-
in
ftc.v
:- lemmas
increasing_image_oo
,decreasing_image_oo
,increasing_cvg_at_right_comp
,increasing_cvg_at_left_comp
,decreasing_cvg_at_right_comp
,decreasing_cvg_at_left_comp
, - lemma
eq_integral_itv_bounded
. - lemmas
integration_by_substitution_decreasing
,integration_by_substitution_oppr
,integration_by_substitution_increasing
- lemmas
-
theories/topology.v
split intoclassical/filter.v
andtheories/topology.v
-
moved from
topology.v
tofilter.v
- definition
set_system
, coercionset_system_to_set
- mixin
isFiltered
, structuresFiltered
,PointedFiltered
(with resp. typesfilteredType
andpfilteredType
) - mixin
selfFiltered
- factory
hasNbhs
- structures
Nbhs
,PointedNbhs
(with resp. typesnbhsType
,pnbhsType
) - definitions
filter_from
,filter_prod
- definitions
prop_near1
,prop_near2
- notations
{near _, _}
,\forall _ \near _, _
,near _, _
,{near _ & _, _}
,\forall _ \near _ & _, _
,\forall _ & _ \near _, _
,\near _ & _, _
- lemmas
nearE
,eq_near
,nbhs_filterE
- module
NbhsFilter
(with definitionnbhs_simpl
) - definition
cvg_to
, notation_ `=>` _
- lemmas
cvg_refl
,cvg_trans
, notation_ --> _
- definitions
type_of_filter
,lim_in
,lim
- notations
[lim _ in _]
,[cvg _ in _]
,cvg
- definition
eventually
, notation\oo
- lemmas
cvg_prod
,cvg_in_ex
,cvg_ex
,cvg_inP
,cvgP
,cvg_in_toP
,cvg_toP
,dvg_inP
,dvgP
,cvg_inNpoint
,cvgNpoint
- lemmas
nbhs_nearE
,near_nbhs
,near2_curry
,near2_pair
,filter_of_nearI
- definition
near2E
- module
NearNbhs
(with (re)definitionnear_simpl
and ltacnear_simpl
) - lemma
near_swap
- classes
Filter
- lemmas
filter_setT
,filterP_strong
- structure
filter_on
- definition
filter_class
- coercion
filter_filter'
- structure
pfilter_on
- definition
pfilter_class
- canonical
pfilter_filter_on
- coercion
pfilter_filter_on
- definiton
PFilterType
- instances
filter_on_Filter
,pfilter_on_ProperFilter
- lemma
nbhs_filter_onE
,near_filter_onE
- definition and canonical
trivial_filter_on
- lemmas
filter_nbhsT
,nearT
,filter_not_empty_ex
- lemma
filter_ex_subproof
, definitionfilter_ex
- lemma
filter_getP
- record
in_filter
- module type
in_filter
, modulePropInFilter
, notationprop_of
, definitionprop_ofE
, notation_ \is_near _
, definitionis_nearE
- lemma
prop_ofP
- definition
in_filterT
- canonical
in_filterI
- lemma
filter_near_of
- fact
near_key
- lemmas
mark_near
,near_acc
,near_skip_subproof
- tactic notations
near=>
,near:
,near do _
- ltacs
just_discharge_near
,near_skip
,under_near
,end_near
,done
- lemmas
have_near
,near
,nearW
,filterE
,filter_app
,filter_app2
,filter_app3
,filterS2
,filterS3
,filter_const
,in_filter_from
,near_andP
,nearP_dep
,filter2P
,filter_ex2
,filter_fromP
,filter_fromTP
,filter_from_filter
,filter_fromT_filter
,filter_from_proper
,filter_bigI
,filter_forall
,filter_imply
- definition
fmap
- lemma
fmapE
- notations
_ @[_ --> _]
,_ @[_ \oo]
,_ @ _
,limn
,cvgn
- instances
fmap_filter
,fmap_proper_filter
- definition
fmapi
, notations_
@[_ --> ],
@ _
- lemma
fmapiE
- instances
fmapi_filter
.fmapi_proper_filter
- lemmas
cvg_id
,fmap_comp
,appfilter
,cvg_app
,cvgi_app
,cvg_comp
,cvgi_comp
,near_eq_cvg
,eq_cvg
,eq_is_cvg_in
,eq_is_cvg
,neari_eq_loc
,cvg_near_const
- definition
continuous_at
, notationcontinuous
- lemma
near_fun
- definition
globally
, lemmaglobally0
, instancesglobally_filter
,globally_properfilter
- definition
frechet_filter
, instancesfrechet_properfilter
,frechet_properfilter_nat
- definition
at_point
, instanceat_point_filter
- instances
filter_prod_filter
,filter_prod_proper
, canonicalprod_filter_on
- lemmas
filter_prod1
,filter_prod2
- definition
in_filter_prod
- lemmas
near_pair
,cvg_cst
,cvg_snd
,near_map
,near_map2
,near_mapi
,filter_pair_set
,filter_pair_near_of
- module export
NearMap
- lemmas
filterN
,cvg_pair
,cvg_comp2
- definition
cvg_to_comp_2
- definition
within
, lemmasnear_withinE
,withinT
,near_withinT
,cvg_within
,withinET
, instancewithin_filter
, canonicalwithin_filter_on
, lemmafilter_bigI_within
- definition
subset_filter
, instancesubset_filter_filter
, lemmasubset_filter_proper
- definition
powerset_filter_from
, instancepowerset_filter_from_filter
- lemmas
near_small_set
,small_set_sub
,near_powerset_filter_fromP
,powerset_filter_fromP
,near_powerset_map
,near_powerset_map_monoE
- definitions
principal_filter
,principal_filter_type
- lemmas
principal_filterP
,principal_filter_proper
- class
UltraFilter
, lemmaultraFilterLemma
- lemmas
filter_image
,proper_image
,principal_filter_ultra
,in_ultra_setVsetC
,ultra_image
- instance
smallest_filter_filter
- fixpoint
filterI_iter
- lemmas
filterI_iter_sub
,filterI_iterE
- definition
finI_from
- lemmas
finI_from_cover
,finI_from1
,finI_from_countable
,finI_fromI
,filterI_iter_finI
,filterI_iter_finI
- definition
finI
- lemmas
finI_filter
,filter_finI
,meets_globallyl
,meets_globallyr
,meetsxx
,proper_meetsxx
- instance
eventually_filter
, canonicalseventually_filterType
,eventually_pfilterType
- definition
-
changed when moved from
topology.v
tofilter.v
Build_ProperFilter
->Build_ProperFilter_ex
ProperFilter'
->ProperFilter
- remove notation
ProperFilter
-
moved from
topology.v
tomathcomp_extra.v
:- lemma
and_prop_in
- lemmas
mem_inc_segment
,mem_inc_segment
- lemma
-
moved from
topology.v
toboolp.v
:- lemmas
bigmax_geP
,bigmax_gtP
,bigmin_leP
,bigmin_ltP
- lemmas
-
moved from
topology.v
toseparation_axioms.v
:set_nbhs
,set_nbhsP
,accessible_space
,kolmogorov_space
,hausdorff_space
,compact_closed
,discrete_hausdorff
,compact_cluster_set1
,compact_precompact
,open_hausdorff
,hausdorff_accessible
,accessible_closed_set1
,accessible_kolmogorov
,accessible_finite_set_closed
,subspace_hausdorff
,order_hausdorff
,ball_hausdorff
,Rhausdorff
,close
,closeEnbhs
,closeEonbhs
,close_sym
,cvg_close
,close_refl
,cvgx_close
,cvgi_close
,cvg_toi_locally_close
,closeE
,close_eq
,cvg_unique
,cvg_eq
,cvgi_unique
,close_cvg
,lim_id
,lim_near_cst
,lim_cst
,entourage_close
,close_trans
,close_cvgxx
,cvg_closeP
,ball_close
,normal_space
,regular_space
,compact_regular
,uniform_regular
,totally_disconnected
,zero_dimensional
,discrete_zero_dimension
,zero_dimension_totally_disconnected
,zero_dimensional_ray
,type
,countable_uniform_bounded
,countable_uniform
,sup_pseudometric
,countable_uniformityT
,gauge
,iter_split_ent
,gauge_ent
,gauge_filter
,gauge_refl
,gauge_inv
,gauge_split
,gauge_countable_uniformity
,uniform_pseudometric_sup
,perfect_set
,perfectTP
, andperfectTP_ex
. -
in
numfun.v
:- lemma
gt0_funeposM
renamed toge0_funeposM
and hypothesis weakened from strict to large inequality - lemma
gt0_funenegM
renamed toge0_funenegM
and hypothesis weakened from strict to large inequality - lemma
lt0_funeposM
renamed tole0_funeposM
and hypothesis weakened from strict to large inequality - lemma
lt0_funenegM
renamed tole0_funenegM
and hypothesis weakened from strict to large inequality
- lemma
- in file
topology.v
->separation_axioms.v
totally_disconnected_cvg
->zero_dimensional_cvg
.perfect_set2
->perfectTP_ex
-
in
constructive_ereal.v
:- lemmas
maxeMr
,maxeMl
,mineMr
,mineMr
: hypothesis weakened from strict inequality to large inequality
- lemmas
-
in
sequences.v
:- lemma
eseries_mkcond
- lemma
nneseries_tail_cvg
- lemma
-
in
exp.v
:- lemmas
expR_ge1Dx
andexpeR_ge1Dx
(remove hypothesis) - lemma
le_ln1Dx
(weaken hypothesis)
- lemmas
-
in
derive.v
:- lemma
derivableX
- lemma
-
in
lebesgue_integral.v
:- lemma
integral_setD1_EFin
- lemmas
integral_itv_bndo_bndc
,integral_itv_obnd_cbnd
- lemmas
Rintegral_itv_bndo_bndc
,Rintegral_itv_obnd_cbnd
- lemma
-
in
separation_axioms.v
:- definition
cvg_toi_locally_close
- definition
-
in
realfun.v
:- lemma
lime_sup_ge0
- lemma
-
in
constructive_ereal.v
:- notation
lte_spaddr
(deprecated since 0.6) - notation
gte_opp
(deprecated since 0.6.0) - lemmas
daddooe
,daddeoo
- notations
desum_ninftyP
,desum_ninfty
,desum_pinftyP
,desum_pinfty
(deprecated since 0.6.0) - notation
eq_pinftyP
(deprecated since 0.6.0)
- notation
-
in
topology.v
:- notation
[filteredType _ of _]
- definition
fmap_proper_filter'
- definition
filter_map_proper_filter'
- definition
filter_prod_proper'
- notation
-
in
normedtype.v
:- notation
normmZ
(deprecated since 0.6.0) - notation
nbhs_image_ERFin
(deprecated since 0.6.0) - notations
ereal_limrM
,ereal_limMr
,ereal_limN
(deprecated since 0.6.0) - notation
norm_cvgi_map_lim
(deprecated since 0.6.0) - notations
ereal_cvgN
,ereal_is_cvgN
,ereal_cvgrM
,ereal_is_cvgrM
,ereal_cvgMr
,ereal_is_cvgMr
,ereal_cvgM
(deprecated since 0.6.0) - notation
cvg_dist
, lemma__deprecated__cvg_dist
(deprecated since 0.6.0) - notation
cvg_dist2
, lemma__deprecated__cvg_dist2
(deprecated since 0.6.0) - notation
cvg_dist0
, lemma__deprecated__cvg_dist0
(deprecated since 0.6.0) - notation
ler0_addgt0P
, lemma__deprecated__ler0_addgt0P
(deprecated since 0.6.0) - notation
cvg_bounded_real
, lemma__deprecated__cvg_bounded_real
(deprecated since 0.6.0) - notation
linear_continuous0
, lemma__deprecated__linear_continuous0
(deprecated since 0.6.0)
- notation
-
in
sequences.v
:- notation
nneseries_mkcond
(was deprecated since 0.6.0) - notation
squeeze
, lemma__deprecated__squeeze
(deprecated since 0.6.0) - notation
cvgPpinfty
, lemma__deprecated__cvgPpinfty
(deprecated since 0.6.0) - notation
cvgNpinfty
, lemma__deprecated__cvgNpinfty
(deprecated since 0.6.0) - notation
cvgNninfty
, lemma__deprecated__cvgNninfty
(deprecated since 0.6.0) - notation
cvgPninfty
, lemma__deprecated__cvgPninfty
(deprecated since 0.6.0) - notation
ger_cvg_pinfty
, lemma__deprecated__ger_cvg_pinfty
(deprecated since 0.6.0) - notation
ler_cvg_ninfty
, lemma__deprecated__ler_cvg_ninfty
(deprecated since 0.6.0) - notation
lim_ge
, lemma__deprecated__lim_ge
(deprecated since 0.6.0) - notation
lim_le
, lemma__deprecated__lim_le
(deprecated since 0.6.0)
- notation
-
in
mathcomp_extra.v
:- lemmas
invf_ple
,invf_lep
- lemmas
-
in
classical_sets.v
:- scope
relation_scope
with delimiterrelation
- notation
^-1
inrelation_scope
(used to be a local notation) - lemma
set_prod_invK
(was a local lemma innormedtype.v
) - definition
diagonal
, lemmadiagonalP
- scope
-
in
functions.v
:- lemmas
mul_funC
- lemmas
-
in
set_interval.v
:- lemma
subset_itvSoo
- definitions
itv_is_ray
,itv_is_bd_open
, anditv_open_ends
- lemmas
itv_open_ends_rside
,itv_open_ends_rinfty
,itv_open_ends_lside
,itv_open_ends_linfty
,is_open_itv_itv_is_bd_openP
,itv_open_endsI
,itv_setU
,itv_setI
- lemma
-
in
topology.v
:- lemma
filterN
- Structures
PointedFiltered
,PointedNbhs
,PointedUniform
,PseudoPointedMetric
- definition
order_topology
- lemmas
discrete_nat
,rray_open
,lray_open
,itv_open
,itv_open_ends_open
,rray_closed
,lray_closed
,itv_closed
,itv_closure
,itv_closed_infimums
,itv_closed_supremums
,order_hausdorff
,clopen_bigcup_clopen
,zero_dimensional_ray
,order_nbhs_itv
,open_order_weak
,real_order_nbhsE
- lemma
-
in
normedtype.v
:- lemmas
not_near_inftyP
,not_near_ninftyP
- lemma
ninftyN
- lemma
le_closed_ball
- lemmas
nbhs_right_ltW
,cvg_patch
- lemmas
-
in
derive.v
:- lemma
derive_id
- lemmas
exp_derive
,exp_derive1
- lemma
derive_cst
- lemma
deriveMr
,deriveMl
- lemma
-
in
sequences.v
:- lemma
cvg_geometric_eseries_half
- theorem
Baire
- definition
bounded_fun_norm
- lemma
bounded_landau
- definition
pointwise_bounded
- definition
uniform_bounded
- theorem
Banach_Steinhauss
- lemma
-
in
numfun.v
:- lemma
indicI
- lemma
-
in
measure.v
:- lemma
measurable_neg
,measurable_or
- lemma
-
in
lebesgue_measure.v
:- definitions
is_open_itv
,open_itv_cover
- lemmas
outer_measure_open_itv_cover
,outer_measure_open_le
,outer_measure_open
,outer_measure_Gdelta
,negligible_outer_measure
- lemmas
measurable_fun_eqr
,measurable_fun_indic
,measurable_fun_dirac
,measurable_fun_addn
,measurable_fun_maxn
,measurable_fun_subn
,measurable_fun_ltn
,measurable_fun_leq
,measurable_fun_eqn
- module
NGenCInfty
- definition
G
- lemmas
measurable_itv_bounded
,measurableE
- definition
- definitions
-
in
lebesgue_integral.v
:- lemma
integralZr
- lemma
locally_integrableS
- lemma
integrable_locally_restrict
- lemma
near_davg
- lemma
lebesgue_pt_restrict
- lemma
-
in
ftc.v
:- lemmas
integration_by_parts
,Rintegration_by_parts
- corollary
continuous_FTC1_closed
- lemmas
-
in
topology.v
:- removed the pointed assumptions from
FilteredType
,Nbhs
,TopologicalType
,UniformType
, andPseudoMetricType
. - if you want the original pointed behavior, use the
p
variants of the types, soptopologicalType
instead oftopologicalType
. - generalized most lemmas to no longer depend on pointedness.
The main exception is for references to
cvg
andlim
that depend onget
for their definition. pointed_principal_filter
becomesprinciple_filter_type
and requires onlychoiceType
instead ofpointedType
pointed_discrete_topology
becomesdiscrete_topology_type
and requires onlychoiceType
instead ofpointedType
- renamed lemma
discrete_pointed
todiscrete_space_discrete
- removed the pointed assumptions from
-
in
function_space.v
:- generalized most lemmas to no longer depend on pointedness.
-
in
normedtype.v
:- remove superflous parameters in lemmas
not_near_at_rightP
andnot_near_at_leftP
- lemma
continuous_within_itvP
: change the statement to use the notation[/\ _, _ & _]
- remove superflous parameters in lemmas
-
moved from
numfun.v
tocardinality.v
:- lemma
fset_set_comp
- lemma
-
moved
summability.v
fromtheories
totheories/showcase
-
in
lebesgue_measure.v
:- remove redundant hypothesis from lemma
pointwise_almost_uniform
- remove redundant hypothesis from lemma
-
moved from
lebesgue_measure.v
toset_interval.v
:is_open_itv
, andopen_itv_cover
-
in
lebesgue_integral.v
:- lemma
nice_lebesgue_differentiation
: change the local integrability hypothesis to easy application
- lemma
-
in
ftc.v
:- lemma
FTC1_lebesgue_pt
, corollariesFTC1
,FTC1Ny
: integrability hypothesis weakened
- lemma
-
in
set_interval.v
:subset_itvS
->subset_itvScc
-
in
topology.v
:- in mixin
Nbhs_isUniform_mixin
:entourage_refl_subproof
->entourage_diagonal_subproof
- in factory
Nbhs_isUniform
:entourage_refl
->entourage_diagonal
- in factory
isUniform
:entourage_refl
->entourage_diagonal
- in mixin
-
in
lebesgue_measure.v
:measurable_exprn
->exprn_measurable
measurable_mulrl
->mulrl_measurable
measurable_mulrr
->mulrr_measurable
measurable_fun_pow
->measurable_funX
measurable_oppe
->oppe_measurable
measurable_abse
->abse_measurable
measurable_EFin
->EFin_measurable
measurable_oppr
->oppr_measurable
measurable_normr
->normr_measurable
measurable_fine
->fine_measurable
measurable_natmul
->natmul_measurable
-
in
lebesgue_integral.v
- lemma
integrable_locally
->open_integrable_locally
- lemma
-
in
derive.v
:- lemma
derivable_cst
- lemma
-
in
lebesgue_measure.v
:- lemma
measurable_funX
(wasmeasurable_fun_pow
)
- lemma
-
in
lebesgue_integral.v
- lemma
ge0_integral_closed_ball
- lemma
-
in
ftc.v
:- lemma
continuous_FTC2
(continuity hypothesis weakened)
- lemma
- in
lebesgue_measure.v
:- notation
measurable_fun_sqr
(was deprecated since 0.6.3) - notation
measurable_fun_exprn
(was deprecated since 0.6.3) - notation
measurable_funrM
(was deprecated since 0.6.3) - notation
emeasurable_fun_minus
(was deprecated since 0.6.3) - notation
measurable_fun_abse
(was deprecated since 0.6.3) - notation
measurable_fun_EFin
(was deprecated since 0.6.3) - notation
measurable_funN
(was deprecated since 0.6.3) - notation
measurable_fun_opp
(was deprecated since 0.6.3) - notation
measurable_fun_normr
(was deprecated since 0.6.3) - notation
measurable_fun_fine
(was deprecated since 0.6.3)
- notation
- in
topology.v
:- turned into Let's (inside
HB.builders
):- lemmas
nbhsE_subproof
,openE_subproof
- lemmas
nbhs_pfilter_subproof
,nbhsE_subproof
,openE_subproof
- lemmas
open_fromT
,open_fromI
,open_from_bigU
- lemmas
finI_from_cover
,finI_from_join
- lemmas
nbhs_filter
,nbhs_singleton
,nbhs_nbhs
- lemmas
ball_le
,entourage_filter_subproof
,ball_sym_subproof
,ball_triangle_subproof
,entourageE_subproof
- lemmas
- turned into Let's (inside
- in
wochoice.v
:- two applications of the lemma
in3W
have been removed because they seem to cause a universe inconsistency when one loads thering
module ofalgebra-tactics
- two applications of the lemma
- in
reals.v
:- lemma
rat_in_itvoo
(fromrealType
toarchiFieldType
)
- lemma
-
in
mathcomp_extra.v
:- lemma
ge_floor
- lemmas
intr1D
,intrD1
,floor_eq
,floorN
- lemma
invf_ltp
- lemma
-
new file
wochoice.v
:- definition
prop_within
- lemmas
withinW
,withinT
,sub_within
- notation
{in <= _, _}
- definitions
maximal
,minimal
,upper_bound
,lower_bound
,preorder
,partial_order
,total_order
,nonempty
,minimum_of
,maximum_of
,well_order
,chain
,wo_chain
- lemmas
antisymmetric_wo_chain
,antisymmetric_well_order
,wo_chainW
,wo_chain_reflexive
,wo_chain_antisymmetric
,Zorn's_lemma
,Hausdorff_maximal_principle
,well_ordering_principle
- definition
-
in
classical_sets.v
:- lemma
setCD
- definition
setY
, notation`+`
- lemmas
setY0
,set0Y
,setYK
,setYC
,setYA
,setIYl
,mulrYr
,setY_def
,setYE
,setYU
,setYI
,setYD
,setYCT
,setCYT
,setYTC
,setTYC
- lemma
setDU
- lemmas
setC_I
,bigcup_subset
- lemmas
xsectionP
,ysectionP
- lemma
-
in
constructive_ereal.v
:- lemmas
lteD2rE
,leeD2rE
- lemmas
lte_dD2rE
,lee_dD2rE
- lemmas
-
in
reals.v
:- lemma
mem_rg1_floor
- lemma
-
in
set_interval.v
:- lemmas
subset_itvl
,subset_itvr
,subset_itvS
- lemma
interval_set1
- lemmas
-
in
topology.v
:- lemma
ball_subspace_ball
- lemma
-
in
ereal.v
:- lemmas
restrict_EFin
- lemmas
-
in
normedtype.v
:- lemmas
nbhs_lt
,nbhs_le
- lemma
nbhs_right_ltDr
- lemmas
-
in
numfun.v
:- lemma
epatch_indic
- lemma
restrict_normr
- lemmas
funepos_le
,funeneg_le
- lemma
-
in
realfun.v
:- lemma
nondecreasing_at_left_is_cvgr
- lemmas
nondecreasing_at_left_at_right
,nonincreasing_at_left_at_right
- lemma
-
in
measure.v
:- factory
isAlgebraOfSets_setD
- defintion
setY_closed
- factory
isRingOfSets_setY
- definition
completed_measure_extension
- lemma
completed_measure_extension_sigma_finite
- definition
lim_sup_set
- lemmas
lim_sup_set_ub
,lim_sup_set_cvg
,lim_sup_set_cvg0
- factory
-
in
lebesgue_stieltjes_measure.v
:- definition
completed_lebesgue_stieltjes_measure
- definition
-
in
lebesgue_measure.v
:- definition
completed_lebesgue_measure
- lemma
completed_lebesgue_measure_is_complete
- definition
completed_algebra_gen
- lemmas
g_sigma_completed_algebra_genE
,negligible_sub_caratheodory
,completed_caratheodory_measurable
- definition
-
in
lebesgue_integral.v
:- lemmas
eq_Rintegral
,Rintegral_mkcond
,Rintegral_mkcondr
,Rintegral_mkcondl
,le_normr_integral
,Rintegral_setU_EFin
,Rintegral_set0
,Rintegral_itv_bndo_bndc
,Rintegral_itv_obnd_cbnd
,Rintegral_set1
,Rintegral_itvB
- lemma
integral_Sset1
- lemma
integralEpatch
- lemma
integrable_restrict
- lemma
le_integral
- lemma
null_set_integral
- lemma
EFin_normr_Rintegral
- lemmas
-
in
charge.v
:- definition
charge_variation
- lemmas
abse_charge_variation
,charge_variation_continuous
- definition
induced
- lemmas
semi_sigma_additive_nng_induced
,dominates_induced
,integral_normr_continuous
- definition
-
in
ftc.v
:- lemma
FTC1
(specialization of the previousFTC1
lemma, now renamed toFTC1_lebesgue_pt
) - lemma
FTC1Ny
- definition
parameterized_integral
- lemmas
parameterized_integral_near_left
,parameterized_integral_left
,parameterized_integral_cvg_at_left
,parameterized_integral_continuous
- corollary
continuous_FTC2
- lemma
-
in
mathcomp_extra.v
:- Notation "f ^-1" now at level 35 with f at next level
-
in
classical_sets.v
:- lemmas
Zorn
andZL_preorder
now require a relation of typerel T
instead ofT -> T -> Prop
- lemmas
-
moved from
reals.v
tomathcomp_extra.v
- lemma
lt_succ_floor
: conclusion changed to matchlt_succ_floor
in MathComp, generalized toarchiDomainType
- generalized to
archiDomainType
: lemmasfloor_ge0
,floor_lt0
,floor_natz
,floor_ge_int
,floor_neq0
,floor_lt_int
,ceil_ge
,ceil_ge0
,ceil_gt0
,ceil_le0
,ceil_ge_int
,ceilN
,abs_ceil_ge
- generalized to
archiDomainType
and precondition generalized:floor_le0
- generalized to
archiDomainType
and renamed:ceil_lt_int
->ceil_gt_int
- lemma
-
in
reals.v
:- definitions
Rceil
,Rfloor
- definitions
-
in
topology.v
:- lemmas
subspace_pm_ball_center
,subspace_pm_ball_sym
,subspace_pm_ball_triangle
,subspace_pm_entourage
turned into localLet
's
- lemmas
-
in
lebesgue_integral.v
:- lemma
measurable_int
: argumentmu
now explicit
- lemma
-
moved from
lebesgue_integral.v
toereal.v
:- lemma
funID
- lemma
-
moved from
lebesgue_integral.v
tonumfun.v
:- lemmas
fimfunEord
,fset_set_comp
- lemmas
-
moved from
lebesgue_integral.v
tocardinality.v
:- hint
solve [apply: fimfunP]
- hint
-
in
constructive_ereal.v
:lte_pdivr_mull
->lte_pdivrMl
lte_pdivr_mulr
->lte_pdivrMr
lte_pdivl_mull
->lte_pdivlMl
lte_pdivl_mulr
->lte_pdivlMr
lte_ndivl_mulr
->lte_ndivlMr
lte_ndivl_mull
->lte_ndivlMl
lte_ndivr_mull
->lte_ndivrMl
lte_ndivr_mulr
->lte_ndivrMr
lee_pdivr_mull
->lee_pdivrMl
lee_pdivr_mulr
->lee_pdivrMr
lee_pdivl_mull
->lee_pdivlMl
lee_pdivl_mulr
->lee_pdivlMr
lee_ndivl_mulr
->lee_ndivlMr
lee_ndivl_mull
->lee_ndivlMl
lee_ndivr_mull
->lee_ndivrMl
lee_ndivr_mulr
->lee_ndivrMr
eqe_pdivr_mull
->eqe_pdivrMl
lte_dadd
->lte_dD
lee_daddl
->lee_dDl
lee_daddr
->lee_dDr
gee_daddl
->gee_dDl
gee_daddr
->gee_dDr
lte_daddl
->lte_dDl
lte_daddr
->lte_dDr
gte_dsubl
->gte_dBl
gte_dsubr
->gte_dBr
gte_daddl
->gte_dDl
gte_daddr
->gte_dDr
lee_dadd2lE
->lee_dD2lE
lte_dadd2lE
->lte_dD2lE
lee_dadd2rE
->lee_dD2rE
lee_dadd2l
->lee_dD2l
lee_dadd2r
->lee_dD2r
lee_dadd
->lee_dD
lee_dsub
->lee_dB
lte_dsubl_addr
->lte_dBlDr
lte_dsubl_addl
->lte_dBlDl
lte_dsubr_addr
->lte_dBrDr
lte_dsubr_addl
->lte_dBrDl
gte_opp
->gteN
gte_dopp
->gte_dN
lte_le_add
->lte_leD
lee_lt_add
->lee_ltD
lte_le_dadd
->lte_le_dD
lee_lt_dadd
->lee_lt_dD
lte_le_sub
->lte_leB
lte_le_dsub
->lte_le_dB
-
in
classical_sets.v
:setM
->setX
in_setM
->in_setX
setMR
->setXR
setML
->setXL
setM0
->setX0
set0M
->set0X
setMTT
->setXTT
setMT
->setXT
setTM
->setTX
setMI
->setXI
setM_bigcupr
->setX_bigcupr
setM_bigcupl
->setX_bigcupl
bigcup_setM_dep
->bigcup_setX_dep
bigcup_setM
->bigcup_setX
fst_setM
->fst_setX
snd_setM
->snd_setX
in_xsectionM
->in_xsectionX
in_ysectionM
->in_ysectionX
notin_xsectionM
->notin_xsectionX
notin_ysectionM
->notin_ysectionX
setSM
->setSX
bigcupM1l
->bigcupX1l
bigcupM1r
->bigcupX1r
-
in
cardinality.v
:countableMR
->countableXR
countableM
->countableX
countableML
->countableXL
infiniteMRl
->infiniteXRl
cardMR_eq_nat
->cardXR_eq_nat
finite_setM
->finite_setX
finite_setMR
->finite_setXR
finite_setML
->finite_setXL
fset_setM
->fset_setX
-
in
reals.v
:inf_lb
->inf_lbound
sup_ub
->sup_ubound
ereal_inf_lb
->ereal_inf_lbound
ereal_sup_ub
->ereal_sup_ubound
-
in
topology.v
:compact_setM
->compact_setX
-
in
measure.v
:measurable_restrict
->measurable_restrictT
setD_closed
->setSD_closed
measurableM
->measurableX
-
in
ftc.v
:FTC1
->FTC1_lebesgue_pt
-
in
constructive_ereal.v
:- lemmas
leeN2
,lteN2
generalized fromrealDomainType
tonumDomainType
- lemmas
-
in
measure.v
:- lemma
measurable_restrict
- lemma
-
in
constructive_ereal.v
:- lemmas
lte_opp2
,lee_opp2
(uselteN2
,leeN2
instead)
- lemmas
-
in
reals.v
:floor_le
(usege_floor
instead)le_floor
(useNum.Theory.floor_le
instead)le_ceil
(useceil_ge
instead)
-
in
lebesgue_integral.v
:- lemmas
integralEindic
,integral_setI_indic
- lemmas
-
in
classical_sets.v
:- inductive
tower
- lemma
ZL'
- inductive
-
in
reals.v
:- definition
floor
(useNum.floor
instead) - definition
ceil
(useNum.ceil
instead) - lemmas
floor0
,floor1
- lemma
le_floor
(useNum.Theory.floor_le
instead)
- definition
-
in
topology.v
,function_spaces.v
,normedtype.v
:- local notation
to_set
- local notation
-
in file
mathcomp_extra.v
:- module
Order
- definitions
disp_t
,default_display
- definitions
- lemma
Pos_to_natE
- module
-
in
classical_sets.v
:- lemma
bigcup_recl
- notations
\bigcup_(i >= n) F i
and\bigcap_(i >= n) F i
- lemmas
bigcup_addn
,bigcap_addn
- lemmas
setD_bigcup
,nat_nonempty
- hint
nat_nonempty
- lemma
bigcup_bigsetU_bigcup
- lemmas
setDUD
,setIDAC
- lemma
-
in
Rstruct.v
:- lemma
IZRposE
- lemma
-
in
signed.v
:- lemma
onem_nonneg_proof
, definitiononem_nonneg
- lemma
-
in
esum.v
:- lemma
nneseries_sum_bigcup
- lemma
-
in
normedtype.v
:- lemma
not_near_at_leftP
- lemma
-
in
sequences.v
:- lemma
nneseries_recl
- lemma
nneseries_addn
- lemma
-
in
realfun.v
- lemmas
total_variation_nondecreasing
,total_variation_bounded_variation
- lemmas
-
in
measure.v
:- definition
subset_sigma_subadditive
- factory
isSubsetOuterMeasure
- structure
SigmaRing
, notationsigmaRingType
- factory
isSigmaRing
- lemma
bigcap_measurable
forsigmaRingType
- lemma
setDI_semi_setD_closed
- lemmas
powerset_lambda_system
,lambda_system_smallest
,sigmaRingType_lambda_system
- definitions
niseq_closed
,sigma_ring
(notation<<sr _ >>
),monotone
(notation<<M _ >>
) - lemmas
smallest_sigma_ring
,sigma_ring_monotone
,g_sigma_ring_monotone
,sub_g_sigma_ring
,setring_monotone_sigma_ring
,g_monotone_monotone
,g_monotone_setring
,g_monotone_g_sigma_ring
,monotone_setring_sub_g_sigma_ring
- lemmas
powerset_sigma_ring
,g_sigma_ring_strace
,setI_g_sigma_ring
,subset_strace
- lemma
measurable_and
- lemma
measurableID
- lemma
strace_sigma_ring
- definition
-
in
lebesgue_measure.v
:- lemma
measurable_fun_ler
- lemmas
measurable_natmul
,measurable_fun_pow
- lemma
-
in
lebesgue_integral.v
:- lemmas
integrableMl
,integrableMr
- lemmas
-
in
probability.v
:- definition
bernoulli_pmf
- lemmas
bernoulli_pmf_ge0
,bernoulli_pmf1
,measurable_bernoulli_pmf
- definition
bernoulli
(equipped with theprobability
structure) - lemmas
bernoulli_dirac
,bernoulliE
,integral_bernoulli
,measurable_bernoulli
,measurable_bernoulli2
- definition
binomial_pmf
- lemmas
binomial_pmf_ge0
,measurable_binomial_pmf
- definitions
binomial_prob
(equipped with theprobability
structure),bin_prob
- lemmas
bin_prob0
,bin_prob1
,binomial_msum
,binomial_probE
,integral_binomial
,integral_binomial_prob
,measurable_binomial_prob
- definition
uniform_pdf
- lemmas
measurable_uniform_pdf
,integral_uniform_pdf
,integral_uniform_pdf1
- definition
uniform_prob
(equipped with theprobability
structure) - lemmas
dominates_uniform_prob
,integral_uniform
- definition
-
new file
theories/all_analysis.v
-
in
forms.v
:- notation
u ``_ _
- notation
-
in
sequences.v
:- definition
expR
is now HB.locked - equality reversed in lemma
eq_bigcup_seqD
eq_bigsetU_seqD
renamed tonondecreasing_bigsetU_seqD
and equality reversed
- definition
-
in
trigo.v
:- definitions
sin
,cos
,acos
,asin
,atan
are now HB.locked
- definitions
-
in
measure.v
:- change the hypothesis of
measurable_fun_bool
- mixin
AlgebraOfSets_isMeasurable
renamed tohasMeasurableCountableUnion
and made to inherit fromSemiRingOfSets
- rm hypo and variable in lemma
smallest_monotone_classE
and rename tosmallest_lambda_system
- rm hypo in lemma
monotone_class_g_salgebra
and renamed tog_salgebra_lambda_system
- rm hypo in lemma
monotone_class_subset
and renamed tolambda_system_subset
- notation
<<m _, _>>
changed to<<l _, _>>
, notation<<m _>>
changed to<<l _>>
- change the hypothesis of
-
moved from
lebesgue_measure.v
tomeasure.v
:- definition
strace
- lemma
sigma_algebra_strace
- definition
-
in
classical_sets.v
:notin_set
->notin_setE
-
in
constructive_ereal.v
:gee_pmull
->gee_pMl
gee_addl
->geeDl
gee_addr
->geeDr
gte_addl
->gteDl
gte_addr
->gteDr
lte_subl_addr
->lteBlDr
lte_subl_addl
->lteBlDl
lte_subr_addr
->lteBrDr
lte_subr_addl
->lteBrDl
lee_subl_addr
->leeBlDr
lee_subl_addl
->leeBlDl
lee_subr_addr
->leeBrDr
lee_subr_addl
->leeBrDl
num_lee_maxr
->num_lee_max
num_lee_maxl
->num_gee_max
num_lee_minr
->num_lee_min
num_lee_minl
->num_gee_min
num_lte_maxr
->num_lte_max
num_lte_maxl
->num_gte_max
num_lte_minr
->num_lte_min
num_lte_minl
->num_gte_min
-
in
signed.v
:num_le_maxr
->num_le_max
num_le_maxl
->num_ge_max
num_le_minr
->num_le_min
num_le_minl
->num_ge_min
num_lt_maxr
->num_lt_max
num_lt_maxl
->num_gt_max
num_lt_minr
->num_lt_min
num_lt_minl
->num_gt_min
-
in
measure.v
:sub_additive
->subadditive
sigma_sub_additive
->measurable_subset_sigma_subadditive
content_sub_additive
->content_subadditive
ring_sigma_sub_additive
->ring_sigma_subadditive
Content_SubSigmaAdditive_isMeasure
->Content_SigmaSubAdditive_isMeasure
measure_sigma_sub_additive
->measure_sigma_subadditive
measure_sigma_sub_additive_tail
->measure_sigma_subadditive_tail
bigcap_measurable
->bigcap_measurableType
monotone_class
->lambda_system
monotone_class_g_salgebra
->g_sigma_algebra_lambda_system
smallest_monotone_classE
->smallest_lambda_system
dynkin_monotone
->dynkin_lambda_system
dynkin_g_dynkin
->g_dynkin_dynkin
salgebraType
->g_sigma_algebraType
g_salgebra_measure_unique_trace
->g_sigma_algebra_measure_unique_trace
g_salgebra_measure_unique_cover
->g_sigma_algebra_measure_unique_cover
g_salgebra_measure_unique
->g_sigma_algebra_measure_unique
setI_closed_gdynkin_salgebra
->setI_closed_g_dynkin_g_sigma_algebra
-
in
lebesgue_integral.v
:integral_measure_add
->ge0_integral_measure_add
integral_pushforward
->ge0_integral_pushforward
-
in
Rstruct.v
:- lemmas
RinvE
,RdivE
- lemmas
-
in
constructive_ereal.v
:gee_pMl
(wasgee_pmull
)
-
in
sequences.v
:- lemmas
eseries0
,nneseries_split
- lemmas
-
in
measure.v
:- lemmas
outer_measure_subadditive
,outer_measureU2
(fromsemiRingOfSetType
toType
) - lemmas
caratheodory_measurable_mu_ext
,measurableM
,measure_dominates_trans
,ess_sup_ge0
definitionspreimage_classes
,measure_dominates
,ess_sup
(frommeasurableType
tosemiRingOfSetsType
) - lemmas
measurable_prod_measurableType
,measurable_prod_g_measurableTypeR
(frommeasurableType
toalgebraOfSetsType
) - from
measurableType
tosigmaRingType
- lemmas
bigcup_measurable
,bigcapT_measurable
- definition
measurable_fun
- lemmas
measurable_id
,measurable_comp
,eq_measurable_fun
,measurable_cst
,measurable_fun_bigcup
,measurable_funU
,measurable_funS
,measurable_fun_if
- lemmas
semi_sigma_additiveE
,sigma_additive_is_additive
,measure_sigma_additive
- definitions
pushforward
,dirac
- lemmas
diracE
,dirac0
,diracT
,finite_card_sum
,finite_card_dirac
,infinite_card_dirac
- definitions
msum
,measure_add
,mscale
,mseries
,mrestr
- lemmas
msum_mzero
,measure_addE
- definition
sfinite_measure
- mixin
isSFinite
, structureSFiniteMeasure
- structure
FiniteMeasure
- factory
Measure_isSFinite
- lemma
negligible_bigcup
- definition
ae_eq
- lemmas
ae_eq0
,ae_eq_comp
,ae_eq_funeposneg
,ae_eq_refl
,ae_eq_sym
,ae_eq_trans
,ae_eq_sub
,ae_eq_mul2r
,ae_eq_mul2l
,ae_eq_mul1l
,ae_eq_abse
,ae_eq_subset
- lemmas
- from
measurableType
tosigmaRingType
and fromrealType
torealFieldType
- definition
mzero
- definition
- from
realType
torealFieldType
:- lemma
sigma_finite_mzero
- lemma
- lemmas
-
in
lebesgue_measure.v
:- from
measurableType
tosigmaRingType
- section
measurable_fun_measurable
- section
- from
-
in
lebesgue_integral.v
:- lemma
ge0_integral_bigcup
- lemma
ge0_emeasurable_fun_sum
- from
measurableType
tosigmaRingType
- mixin
isMeasurableFun
- structure
SimpleFun
- structure
NonNegSimpleFun
- sections
fimfun_bin
,mfun_pred
,sfun_pred
,simple_bounded
- lemmas
nnfun_muleindic_ge0
,mulemu_ge0
,nnsfun_mulemu_ge0
- section
sintegral_lemmas
- lemma
eq_sintegral
- section
sintegralrM
- mixin
- lemma
-
in
probability.v
:- lemma
markov
- lemma
- in
classical_sets.v
:notin_set
(usenotin_setE
instead)
-
in
forms.v
- canonical
rev_mulmx
- structure
revop
- canonical
-
in
reals.v
- lemma
inf_lower_bound
(useinf_lb
instead)
- lemma
-
in
derive.v
:- definition
mulr_rev
- canonical
rev_mulr
- lemmas
mulr_is_linear
,mulr_rev_is_linear
- definition
-
in
measure.v
:- lemmas
prod_salgebra_set0
,prod_salgebra_setC
,prod_salgebra_bigcup
(usemeasurable0
,measurableC
,measurable_bigcup
instead)
- lemmas
-
in
lebesgue_measure.v
:- lemmas
stracexx
,strace_measurable
- lemmas
-
in
lebesgue_integral.v
:integrablerM
,integrableMr
(were deprecated since version 0.6.4)
-
in
mathcomp_extra.v
- lemma
invf_plt
- lemma
-
in
contra.v
:- in module
Internals
- variant
equivT
- definitions
equivT_refl
,equivT_transl
,equivT_sym
,equivT_trans
,equivT_transr
,equivT_Prop
,equivT_LR
(hint view),equivT_RL
(hint view)
- variant
- definition
notP
- hint view for
move/
andapply/
forInternals.equivT_LR
,Internals.equivT_RL
- in module
-
in
set_interval.v
- lemmas
setDitv1r
,setDitv1l
- lemmas
set_itvxx
,itv_bndbnd_setU
- lemmas
-
in
reals.v
- lemma
abs_ceil_ge
- lemma
-
in
topology.v
:- lemmas
nbhs_infty_ger
,nbhs0_ltW
,nbhs0_lt
- lemmas
-
file
function_spaces.v
-
in
normedtype.v
- lemma
closed_ball_ball
- lemma
ball_open_nbhs
- definition
completely_regular_space
- lemmas
point_uniform_separator
, anduniform_completely_regular
.
- lemma
-
in
exp.v
- lemma
ln_lt0
- lemma
expRM_natr
- lemma
-
in
numfun.v
- lemma
cvg_indic
- lemma
-
in
lebesgue_integral.v
- lemma
ge0_integralZr
- lemma
locally_integrable_indic
- definition
davg
, lemmasdavg0
,davg_ge0
,davgD
,continuous_cvg_davg
- definition
lim_sup_davg
, lemmaslim_sup_davg_ge0
,lim_sup_davg_le
,continuous_lim_sup_davg
,lim_sup_davgB
,lim_sup_davgT_HL_maximal
- definition
lebesgue_pt
, lemmacontinuous_lebesgue_pt
- lemma
integral_setU_EFin
- lemmas
integral_set1
,ge0_integral_closed_ball
,integral_setD1_EFin
,integral_itv_bndo_bndc
,integral_itv_obnd_cbnd
- lemma
lebesgue_differentiation
- lemma
lebesgue_density
- definition
nicely_shrinking
, lemmasnicely_shrinking_gt0
,nicely_shrinking_lty
,nice_lebesgue_differentiation
- lemma
-
new file
ftc.v
:- lemmas
FTC1
,continuous_FTC1
- lemmas
-
moved from
topology.v
tofunction_spaces.v
:prod_topology
,product_topology_def
,proj_continuous
,dfwith_continuous
,proj_open
,hausdorff_product
,tychonoff
,perfect_prod
,perfect_diagonal
,zero_dimension_prod
,totally_disconnected_prod
,separate_points_from_closed
,weak_sep_cvg
,weak_sep_nbhsE
,weak_sep_openE
,join_product
,join_product_continuous
,join_product_open
,join_product_inj
,join_product_weak
,fct_ent
,fct_ent_filter
,fct_ent_refl
,fct_ent_inv
,fct_ent_split
,cvg_fct_entourageP
,fun_complete
,fct_ball
,fct_ball_center
,fct_ball_sym
,fct_ball_triangle
,fct_entourage
,cvg_switch_1
,cvg_switch_2
,cvg_switch
,uniform_fun
,uniform_nbhs
,uniform_entourage
,restricted_cvgE
,pointwise_cvgE
,uniform_fun_family
,uniform_set1
,uniform_subset_nbhs
,uniform_subset_cvg
,pointwise_uniform_cvg
,cvg_sigL
,eq_in_close
,hausdorrf_close_eq_in
,uniform_restrict_cvg
,uniform_nbhsT
,cvg_uniformU
,cvg_uniform_set0
,fam_cvgP
,family_cvg_subset
,family_cvg_finite_covers
,fam_cvgE
,fam_nbhs
,fam_compact_nbhs
,compact_open
,compact_openK
,compact_openK_nbhs
,compact_open_of_nbhs
,compact_open_def
,compact_open_cvgP
,compact_open_open
,compact_open_fam_compactP
,compactly_in
,compact_cvg_within_compact
,uniform_limit_continuous
,uniform_limit_continuous_subspace
,singletons
,pointwise_cvg_family_singleton
,pointwise_cvg_compact_family
,pointwise_cvgP
,equicontinuous
,equicontinuous_subset
,equicontinuous_subset_id
,equicontinuous_continuous_for
,equicontinuous_continuous
,pointwise_precompact
,pointwise_precompact_subset
,pointwise_precompact_precompact
,uniform_pointwise_compact
,precompact_pointwise_precompact
,pointwise_cvg_entourage
,equicontinuous_closure
,small_ent_sub
,pointwise_compact_cvg
,pointwise_compact_closure
,pointwise_precompact_equicontinuous
,compact_equicontinuous
,precompact_equicontinuous
,Ascoli
,continuous_curry
,continuous_uncurry_regular
,continuous_uncurry
,curry_continuous
, anduncurry_continuous
. -
moved from
cantor.v
totopology.v
:- lemma
discrete_bool_compact
- definition
pointed_principal_filter
- definition
pointed_discrete_topology
- lemma
discrete_pointed
- lemma
-
in
measure.v
:- lemma
sigma_finiteP
generalized to an equivalence and changed to use[/\ ..., .. & ....]
- lemma
-
move from
kernel.v
tomeasure.v
- definition
mset
,pset
,pprobability
- lemmas
lt0_mset
,gt1_mset
- definition
-
in
constructive_ereal.v
:lee_addl
->leeDl
lee_addr
->leeDr
lee_add2l
->leeD2l
lee_add2r
->leeD2r
lee_add
->leeD
lee_sub
->leeB
lee_add2lE
->leeD2lE
lte_add2lE
->lteD2lE
lee_oppl
->leeNl
lee_oppr
->leeNr
lte_oppr
->lteNr
lte_oppl
->lteNl
lte_add
->lteD
lte_addl
->lteDl
lte_addr
->lteDr
-
in
exp.v
:expRMm
->expRM_natl
-
in
measure.v
:Measure_isSFinite_subdef
->isSFinite
sfinite_measure_subdef
->s_finite
SigmaFinite_isFinite
->isFinite
FiniteMeasure_isSubProbability
->isSubProbability
-
in
lebesgue_integral.v
integral_setU
->ge0_integral_setU
subset_integral
->ge0_subset_integral
- in
realfun.v
- lemma
lime_sup_le
- lemma
-
in
topology.v
:- definition
pointwise_fun
- module
PtwsFun
- definition
-
in
mathcomp_extra.v
:- notations
eqLHS
andeqRHS
(they areeqbLHS
andeqbRHS
in mathcomp since 1.15.0)
- notations
-
in
constructive_ereal.v
:- definition
dEFin
- notations
%:dE
,%:E
(ereal_dual_scope
) - notation
\bar^d ...
(type_scope
) for dual extended real numbers - instance using
isNmodule.Build
for\bar
- instances using
Choice.on
andisNmodule.Build
for\bar^d
- lemma
EFin_semi_additive
- lemmas
dEFinE
,dEFin_semi_additive
- instance using
isSemiAdditive.Build
for\bar^d
- canonical
dEFin_snum
- definition
-
in
reals.v
:- definition
Rint_pred
- definition
-
in
topology.v
- definition
set_system
, identity coercionset_system_to_set
with instances usingEquality.on
,Choice.on
,Pointed.on
,isFiltered.Build
- mixin
selfFiltered
, factoryhasNbhs
, structureNbhs
, typenbhsType
- instance for matrices using
selfFiltered.Build
- lemmas
cvg_in_ex
,cvg_inP
,cvg_in_toP
,dvg_inP
,cvg_inNpoint
,eq_is_cvg_in
- notations
E @[ x \oo ]
,limn
,cvgn
- definition
continuous_at
- definitions
weak_topology
,sup_topology
,prod_topology
- definition
prod_topo_apply
- definition
discrete_topology
- instead of
zmodType
usingisPointed.Build
- definition
pointwise_cvgE
, instance usingUniform.copy
for{ptws _ -> _}
- definition
compact_open_of_nbhs
, lemmascompact_openK_nbhsE_subproof
,compact_openK_openE_subproof
- definition
-
in
cantor.v
:- definition
pointed_principal_filter
, instances usingPointed.on
andhasNbhs.Build
- definition
pointed_discrete_topology
- lemma
discrete_pointed
- lemma
discrete_bool_compact
- definition
-
in
normedtype.v
:- definition
urysohnType
with instances usingPointed.on
andisUniform.Build
- definition
-
in
derive.v
:- lemma
cvg_at_rightE
,cvg_at_leftE
- lemma
-
in
convex.v
:- definition
convex_lmodType
with instances usingChoice.on
andisConvexSpace.Build
- definition
convex_realDomainType
with instance usingisConvexSpace.Build
- definition
-
in
lebesgue_stieltjes_measure.v
:- instance on
ocitv_type
usingPointed.on
- instance on
-
in
lebesgue_integral.v
:- mixin
isNonNegFun
, notations{nnfun _ >-> _}
,[nnfun of _]
- section
ring
- lemmas
fimfun_mulr_closed
, instances usingGRing.isMulClosed.Build
,[SubZmodule_isSubRing of ... by <:]
- lemmas
fimfunM
,fimfun1
,fimfun_prod
,fimfunX
, - lemma
indic_fimfun_subproof
, instance usingindic_fimfun_subproof
- definition
indic_fimfun
- instance using
FImFun.copy
, definitionscale_fimfun
- lemmas
- section
comring
- instance using
[SubRing_isSubComRing of ... by <:]
- instance using
FImFun.copy
- instance using
- lemmas
fimfunE
,fimfunEord
,trivIset_preimage1
,trivIset_preimage1_in
- section
fimfun_bin
- lemma
max_fimfun_subproof
, instance usingmax_fimfun_subproof
- lemma
- factory
FiniteDecomp
- mixin
-
in
charge.v
:cscale
instances usingSigmaFinite_isFinite.Build
andisAdditiveCharge.Build
-
in
boolp.v
:- in lemma
gen_choiceMixin
:Choice.mixin_of
->hasChoice
- in definition
gen_eqMixin
:EqMixin
->hasDecEq.Build
- canonical
dep_arrow_eqType
-> instance usinggen_eqMixin
- canonical
dep_arrow_choiceType
-> instance usinggen_choiceMixin
- canonical
Prop_eqType
-> instance usinggen_eqMixin
- canonical
Prop_choiceType
-> instance usinggen_choiceMixin
- canonical
classicType_eqType
-> instance usinggen_eqMixin
- canonical
classicType_choiceType
-> instance usinggen_choiceMixin
- canonical
eclassicType_eqType
-> instance usingEquality.copy
- canonical
eclassicType_choiceType
-> instance usinggen_choiceMixin
- definition
porderMixin
and canonicalporderType
-> instance usingisPOrder.Build
- definition
latticeMixin
and canonicallatticeType
-> instance usingPOrder_isLattice.Build
- in lemma
-
in
classical_sets.v
:- canonicals
setU_monoid
,setU_comoid
,setU_mul_monoid
,setI_monoid
,setI_comoid
,setI_mul_monoid
,setU_add_monoid
,setI_add_monoid
-> instances usingisComLaw.Build
,isMulLaw.Build
,isComLaw.Build
,isMulLaw.Build
,isAddLaw.Build
,isAddLaw.Build
- module
Pointed
(packed class) -> mixinisPointed
, structurePointed
- canonical
arrow_pointedType
and definitiondep_arrow_pointedType
-> instance usingisPointed.Build
- canonicals
unit_pointedType
,bool_pointedType
,Prop_pointedType
,nat_pointedType
,prod_pointedType
,matrix_pointedType
,option_pointedType
,pointed_fset
-> instances usingisPointed.Build
- module
Empty
(packed class) -> mixinisEmpty
, structureEmpty
, factoriesChoice_isEmpty
,Type_isEmpty
- definition
False_emptyMixin
and canonicalsFalse_eqType
,False_choiceType
,False_countType
,False_finType
,False_emptyType
-> instance usingType_isEmpty.Build
- definition
void_emptyMixin
and canonicalvoid_emptyType
-> instance usingisEmpty.Build
- definition
orderMixin
and canonicalsporderType
,latticeType
,distrLatticeType
-> instances usingChoice.copy
andisMeetJoinDistrLattice.Build
- canonicals
bLatticeType
,tbLatticeType
,bDistrLatticeType
,tbDistrLatticeType
-> instances usinghasBottom.Build
andhasTop.Build
- canonical
cbDistrLatticeType
-> instance usinghasRelativeComplement.Build
- canonical
ctbDistrLatticeType
-> instance usinghasComplement.Build
- canonicals
-
in
functions.v
:- notation
split
- notation
\_
moved fromfun_scope
tofunction_scope
- notations
pinv
,pPbij
,pPinj
,injpPfun
,funpPinj
- in definition
fct_zmodMixin
:ZmodMixin
->isZmodule.Build
- canonical
fct_zmodType
-> instance usingfct_zmodMixin
- in definition
fct_ringMixin
:RingMixin
->Zmodule_isRing.Build
- canonical
fct_ringType
-> instance usingfct_ringMixin
- canonical
fct_comRingType
-> definition and instance usingRing_hasCommutativeMul.Build
andfct_comRingType
- definition
fct_lmodMixin
and canonicalfct_lmodType
-> definitionfct_lmodMixin
and instance usingfct_lmodMixin
- notation
-
in
cardinality.v
:- canonical
rat_pointedType
-> instance usingisPointed.Build
- canonical
fimfun_subType
-> instance usingisSub.Build
- definition
fimfuneqMixin
and canonicalfimfuneqType
-> instance using[Equality of ... by <:]
- definition
fimfunchoiceMixin
and canonicalfimfunchoiceType
-> instance using[Choice of ... by <:]
- canonicals
fimfun_add
,fimfun_zmod
,fimfun_zmodType
, and definitionfimfun_zmodMixin
-> instances usingisZmodClosed.Build
and[SubChoice_isSubZmodule of ... <:]
- canonical
-
in
signed.v
:- definitions
signed_subType
,signed_choiceMixin
,signed_porderMixin
, canonicalssigned_eqMixin
,signed_eqType
,signed_choiceType
,signed_porderType
-> instances using[isSub for ...]
and[POrder of ... by <:]
- in lemma
signed_le_total
:totalPOrderMixin
->total
- canonicals
signed_latticeType
,signed_distrLatticeType
,signed_orderType
-> instance usingOrder.POrder_isTotal.Build
- definitions
-
in
constructive_ereal.v
:- definition
ereal_eqMixin
and canonicalereal_eqType
-> instance usinghasDecEq.Build
- definition
ereal_choiceMixin
and canonicalereal_choiceType
-> instance usingChoice.copy
- definition
ereal_countMixin
andereal_countType
-> instance usingPCanIsCountable
- definition
ereal_porderMixin
and canonicalChoice.copy
-> instance usingisPOrder.Build
- in lemma
le_total_ereal
:le_total_ereal
->total
- canonicals
ereal_latticeType
,ereal_distrLatticeType
,ereal_orderType
,ereal_blatticeType
,ereal_tblatticeType
, lemmasereal_blatticeMixin
,ereal_blatticeMixin
-> instances usingPOrder_isTotal.Build
,hasBottom.Build
,hasTop.Build
- canonicals
adde_monoid
,adde_comoid
,mule_mulmonoid
-> instance usingisMulLaw.Build
- notations
maxe
,mine
:fun_scope
->function_scope
- canonicals
mule_monoid
,mule_comoid
-> instance usingisComLaw.Build
- canonicals
maxe_monoid
,maxe_comoid
-> instance usingisLaw.Build
- definition
-
in
reals.v
:- module
Real
(packed class) -> mixinArchimedeanField_isReal
with fieldssup_upper_bound_subdef
,sup_adherent_subdef
, structureReal
- canonicals
Rint_keyed
,Rint_opprPred
,Rint_addrPred
,Rint_mulrPred
,Rint_zmodPred
,Rint_semiringPred
,Rint_smulrPred
,Rint_subringPred
-> instance usingGRing.isSubringClosed.Build
- module
-
in
topology.v
:- canonicals
linear_eqType
,linear_choiceType
-> instances usinggen_eqMixin
,gen_choiceMixin
- canonical
gen_choiceMixin
-> instance usingisPointed.Build
- module
Filtered
(packed class) -> mixinisFiltered
with fieldnbhs
, structureFiltered
- now use
set_system
:- definitions
filter_from
,filter_prod
,cvg_to
,type_of_filter
,lim_in
,Build_ProperFilter
,filter_ex
,fmap
,fmapi
,globally
,in_filter_prod
,within
,subset_filter
,powerset_filter_from
,principal_filter
,locally_of
,sup_subbase
,cluster
,compact
,near_covering
,near_covering_within
,compact_near
,nbhs_
,weak_ent
,sup_ent
,cauchy
,cvg_cauchy
,cauchy_ex.Build
,cauchy_ball
- classes
Filter
,ProperFilter'
,UltraFilter
- instances
fmap_proper_filter
,fmapi_filter
,fmapi_proper_filter
,filter_prod_filter
,filter_prod1
,filter_prod2
- record
in_filter
- structure
filter_on
- variant
nbhs_subspace_spec
- lemmas
nearE
,eq_near
,nbhs_filterE
,cvg_refl
,cvg_trans
,near2_curry
,near_swap
,filterP_strong
,filter_nbhsT
,nearT
,filter_not_empty_ex
,filter_ex_subproof
,filter_getP
,near
,nearW
,filterE
,filter_app
,filter_app2
,filter_app3
,filterS2
,filterS3
,nearP_dep
,filter2P
,filter_ex2
,filter_fromP
,filter_fromTP
,filter_bigIP
,filter_forall
,filter_imply
,fmapEP
,fmapiE
,cvg_id
,appfilterP
,cvg_app
,cvgi_app
,cvg_comp
,cvgi_comp
,near_eq_cvg
,eq_cvg
,neari_eq_loc
,cvg_near_const
,near_pair
,near_map
,near_map2
,near_mapi
,filter_pair_set
,filter_pair_near_of
,cvg_pair
,cvg_comp2
,near_powerset_map
,near_powerset_map_monoE
,cvg_fmap
,continuous_cvg
,continuous_is_cvg
,continuous2_cvg
,cvg_near_cst
,is_cvg_near_cst
,cvg_cst
,is_cvg_cst
,fmap_within_eq
,cvg_image
,cvg_fmap2
,cvg_within_filter
,cvg_app_within
,meets_openr
,meets_openl
,meetsxx
,proper_meetsxx
,ultra_cvg_clusterE
,ultraFilterLemma
,compact_ultra
,proper_image
,in_ultra_setVsetC
,ultra_image
,filter_finI
,close_cvg
,discrete_cvg
,nbhs_E
,cvg_closeP
,cvg_mx_entourageP
,cvg_fct_entourageP
,fcvg_ball2P
,cvg_ball2P
,cauchy_cvgP
,mx_complete
,Uniform_isComplete.Build
,cauchy_ballP
,cauchy_exP
,cauchyP
,compact_cauchy_cvg
,pointwise_cvgE
,pointwise_uniform_cvg
,cvg_sigL
,uniform_restrict_cvg
,cvg_uniformU
,cvg_uniform_set0
,fam_cvgP
,family_cvg_subset
,family_cvg_finite_covers
,fam_cvgE
,Nbhs_isTopological
,compact_open_fam_compactP
,compact_cvg_within_compact
,nbhs_subspace
,subspace_cvgP
,uniform_limit_continuous
,uniform_limit_continuous_subspace
,pointwise_compact_cvg
t
in module typePropInFilterSig
- definitions
- canonical
matrix_filtered
-> instance usingisFiltered.Build
- now use
nbhs
instead of[filter of ...]
- notations
-->
,E @[ x --> F ]
,f @ F
,E `@[ x --> F ]
,f `@ G
,{ptws, F --> f }
- notations
- notation
lim
is now a definition - canonical
filtered_prod
-> instances usingisFiltered.Build
,selfFiltered.Build
- now use
set_system
and alsonbhsType
instead offilteredType ...
- lemmas
cvg_ex
,cvgP
,cvg_toP
,dvgP
,cvgNpoint
,eq_is_cvg
- lemmas
- canonicals
filter_on_eqType
,filter_on_choiceType
,filter_on_PointedType
,filter_on_FilteredType
-> instances usinggen_eqMixin
,gen_choiceMixin
,isPointed.Build
,isFiltered.Build
- canonical
bool_discrete_filter
-> instance usinghasNbhs.Build
- module
Topological
(packed class) -> mixinNbhs_isTopological
, structureTopological
, typetopologicalType
- definition
open
now a field of the mixin
- definition
- notation
continuous
now uses definitioncontinuous_at
- section
TopologyOfFilter
-> factoryNbhs_isNbhsTopological
- section
TopologyOfOpen
-> factoryPointed_isOpenTopological
- section
TopologyOfBase
-> factoryPointed_isBaseTopological
- section
TopologyOfSubbase
-> factoryPointed_isSubBaseTopological
- definition
Pointed_isSubBaseTopological
, canonicalsnat_filteredType
,nat_topologicalType
-> instance usingPointed_isBaseTopological.Build
- filter now explicit in the notation
X --> Y
- lemmas
cvg_addnr
,cvg_subnr
,cvg_mulnl
,cvg_mulnr
,cvg_divnr
- lemmas
- definition
prod_topologicalTypeMixin
, canonicalprod_topologicalType
-> instances usinghasNbhs.Build
,Nbhs_isNbhsTopological.Build
- definition
matrix_topologicalTypeMixin
, canonicalmatrix_topologicalType
-> instance usingNbhs_isNbhsTopological.Build
- definitions
weak_topologicalTypeMixin
,weak_topologicalType
-> instances usingPointed.on
,Pointed_isOpenTopological.Build
- definitions
sup_topologicalTypeMixin
,sup_topologicalType
-> instances usingPointed.on
andPointed_isSubBaseTopological.Build
- definition
product_topologicalType
-> definitionproduct_topology_def
and instance usingTopological.copy
- in
lim_id
:nbhs
now explicit - canonical
bool_discrete_topology
-> instance usingbool_discrete_topology
- module
Uniform
(packed class) -> mixinNbhs_isUniform_mixin
, structureUniform
, typeuniformType
, factoriesNbhs_isUniform
,isUniform
- definition
prod_uniformType_mixin
, canonicalprod_uniformType
-> instance usingNbhs_isUniform.Build
- definition
matrix_uniformType_mixin
, canonicalmatrix_uniformType
-> instance usingNbhs_isUniform.Build
- definitions
weak_uniform_mixin
,weak_uniformType
-> instance usingNbhs_isUniform.Build
- definitions
fct_uniformType_mixin
,fct_topologicalTypeMixin
,generic_source_filter
,fct_topologicalType
,fct_uniformType
-> definitionarrow_uniform
and instance usingarrow_uniform
- definitions
sup_uniform_mixin
,sup_uniformType
-> instance usingNbhs_isUniform.Build
- definition
product_uniformType
-> instance usingUniform.copy
- definition
discrete_uniformType
-> instance usingChoice.on
,Choice.on
,discrete_uniform_mixin
- module
PseudoMetric
(packed class) -> factoryNbhs_isPseudoMetric
- definition
ball
now a field of factoryNbhs_isPseudoMetric
- definition
matrix_pseudoMetricType_mixin
, canonicalmatrix_pseudoMetricType
-> instance usingUniform_isPseudoMetric.Build
- definition
prod_pseudoMetricType_mixin
, canonicalprod_pseudoMetricType
-> instance usingUniform_isPseudoMetric.Build
- definition
fct_pseudoMetricType_mixin
, canonicalfct_pseudoMetricType
-> instance usingUniform_isPseudoMetric.Build
- canonical
quotient_subtype
-> instance usingQuotient.copy
- canonical
quotient_eq
-> instance using[Sub ... of ... by %/]
- canonical
quotient_choice
-> instance using[Choice of ... by <:]
- canonical
quotient_pointed
-> instance usingisPointed.Build
- in definition
quotient_topologicalType_mixin
:topologyOfOpenMixin
->Pointed_isOpenTopological.Build
- canonical
quotient_topologicalType
-> instance usingquotient_topologicalType_mixin
- lemma
repr_comp_continuous
uses the notation\pi_
instead of... == ... %[mod ...]
- definition
discrete_pseudoMetricType
-> instead usingdiscrete_pseudometric_mixin
- module
Complete
(packed class) -> mixinUniform_isComplete
, structureComplete
, typecompleteType
- lemma
cauchy_cvg
now a mixin field
- lemma
- canonical
matrix_completeType
-> instance usingUniform_isComplete.Build
- canonical
fun_completeType
-> instance usingUniform_isComplete.Build
- module
CompletePseudoMetric
(packed class) -> structureCompletePseudoMetric
- matrix instance using
Uniform_isComplete.Build
- function instance using
Uniform_isComplete.Build
- module
regular_topology
-> instances usingPointed.on
,hasNbhs.Build
,Nbhs_isPseudoMetric.Build
- in module
numFieldTopology
:realType
,rcfType
,archiFieldType
,realFieldType
,numClosedFieldType
,numFieldType
instances usingPseudoMetric.copy
- definition
fct_RestrictedUniform
,fct_RestrictedUniformTopology
, canonicalfct_RestrictUniformFilteredType
,fct_RestrictUniformTopologicalType
,fct_restrictedUniformType
-> definitionuniform_fun
, instance usingUnifom.copy
for{uniform` _ -> _}
- definitions
fct_Pointwise
,fct_PointwiseTopology
, canonicalsfct_PointwiseFilteredType
,fct_PointwiseTopologicalType
-> definitionpointwise_fun
, instance usingTopological.copy
- definition
compact_openK_topological_mixin
, canonicalcompact_openK_filter
,compact_openK_topological
-> instances usingPointed.on
,hasNbhs.Build
,compact_openK_openE_subproof
forcompact_openK
- canonical
compact_open_pointedType
, definitioncompact_open_topologicalType
, canonicalscompact_open_filtered
,compact_open_filtered
-> definitioncompact_open_def
, instances usingPointed.on
,Nbhs.copy
,Pointed.on
,Nbhs_isTopological
- definitions
weak_pseudoMetricType_mixin
,weak_pseudoMetricType
-> lemmasweak_pseudo_metric_ball_center
,weak_pseudo_metric_entourageE
, instance usingniform_isPseudoMetric.Build
- definition
countable_uniform_pseudoMetricType_mixin
-> modulecountable_uniform
with definitiontype
, instances usingUniform.on
,Uniform_isPseudoMetric.Build
, lemmacountable_uniform_bounded
, notationcountable_uniform
- definitions
sup_pseudoMetric_mixin
,sup_pseudoMetricType
,product_pseudoMetricType
-> instances usingPseudoMetric.on
,PseudoMetric.copy
- definitions
subspace_pointedType
,subspace_topologicalMixin
, canonicalssubspace_filteredType
,subspace_topologicalType
-> instance usingChoice.copy
,isPointed.Build
,hasNbhs.Build
, lemmasnbhs_subspaceP_subproof
,nbhs_subspace_singleton
,nbhs_subspace_nbhs
, instance usingNbhs_isNbhsTopological.Build
- definition
subspace_uniformMixin
, canonicalsubspace_uniformType
-> instance usingNbhs_isUniform_mixin.Build
- definition
subspace_pseudoMetricType_mixin
, canonicalsubspace_pseudoMetricType
-> lemmassubspace_pm_ball_center
,subspace_pm_ball_sym
,subspace_pm_ball_triangle
,subspace_pm_entourageE
, instance usingUniform_isPseudoMetric.Build
- section
gauges
-> modulegauge
gauge_pseudoMetricType
->gauge.type
(instances usingUniform.on
,PseudoMetric.on
)gauge_uniformType
->gauge.type
- canonicals
-
in
cantor.v
:- in definition
tree_of
and lemmacantor_like_finite_prod
:pointed_discrete
->pointed_discrete_topology
- in definition
-
in
normedtype.v
:- module
PseudoMetricNormedZmodule
(packed class) -> mixinNormedZmod_PseudoMetric_eq
(with fieldpseudo_metric_ball_norm
), structurePseudoMetricNormedZmod
- now use
set_system
:- definitions
pinfty_nbhs
,ninfty_nbhs
,dominated_by
,strictly_dominated_by
,bounded_near
,sub_klipschitz
,lipschitz_on
,sub_lipschitz
- lemmas
cvgrnyP
,cvgenyP
,fcvgrPdist_lt
,cvgrPdist_lt
,cvgrPdistC_lt
,cvgr_dist_lt
,cvgr_distC_lt
,cvgr_dist_le
,cvgr_distC_le
,cvgr0Pnorm_lt
,cvgr0_norm_lt
,cvgr0_norm_le
,cvgrPdist_le
,cvgrPdist_ltp
,cvgrPdist_lep
,cvgrPdistC_le
,cvgrPdistC_ltp
,cvgrPdistC_lep
,cvgr0Pnorm_le
,cvgr0Pnorm_ltp
,cvgr0Pnorm_lep
,cvgr_norm_lt
,cvgr_norm_le
,cvgr_norm_gt
,cvgr_norm_ge
,cvgr_neq0
,real_cvgr_lt
,real_cvgr_le
,real_cvgr_gt
,real_cvgr_ge
,cvgr_lt
,cvgr_le
,cvgr_gt
,cvgr_ge
,sub_dominatedl
,sub_dominatedr
,ex_dom_bound
,ex_strict_dom_bound
,sub_boundedr
,sub_boundedl
,ex_bound
,ex_strict_bound
,ex_strict_bound_gt0
,klipschitzW
,cvg_bounded
,fcvgr2dist_ltP
,cvgr2dist_ltP
,cvgr2dist_lt
- definitions
- module
NormedModule
(packed class) -> mixinPseudoMetricNormedZmod_Lmodule_isNormedModule
, structureNormedModule
- module and section
regular_topology
-> sectionregular_topology
with instances usingNum.NormedZmodule.on
,NormedZmod_PseudoMetric_eq.Build
,seudoMetricNormedZmod_Lmodule_isNormedModule.Build
- in module
numFieldNormedType
realType
instances usingGRing.ComAlgebra.copy
,Vector.copy
,NormedModule.copy
rcfType
instances usingGRing.ComAlgebra.copy
,Vector.copy
,NormedModule.copy
archiFieldType
instances usingGRing.ComAlgebra.copy
,Vector.copy
,NormedModule.copy
realFieldType
instances usingGRing.ComAlgebra.copy
,Vector.copy
,NormedModule.copy
,Num.RealField.on
numClosedFieldType
instances usingGRing.ComAlgebra.copy
,Vector.copy
,NormedModule.copy
,Num.ClosedField.on
numFieldType
instances usingGRing.ComAlgebra.copy
,Vector.copy
,NormedModule.copy
,Num.NumField.on
- in lemma
norm_lim_id
: now explicit use ofnbhs
- definition
matrix_PseudoMetricNormedZmodMixin
and canonicalmatrix_normedModType
-> instance usingPseudoMetricNormedZmod_Lmodule_isNormedModule.Build
- definition
prod_pseudoMetricNormedZmodMixin
and canonicalprod_normedModType
-> instance usingPseudoMetricNormedZmod_Lmodule_isNormedModule.Build
- module
CompleteNormedModule
(packed class) -> structureCompleteNormedModule
- canonicals
R_regular_completeType
,R_regular_CompleteNormedModule
-> instance usingUniform_isComplete.Build
- canonicals
R_completeType
andR_CompleteNormedModule
-> instance usingComplete.on
- now use
cvgn
instead ofcvg
:- lemma
cvg_seq_bounded
- lemma
- module
-
in
Rstruct.v
:- canonicals
R_eqMixin
,R_eqType
-> instance usinghasDecEq.Build
- definition
R_choiceMixin
and canonicalR_choiceType
-> instance usinghasChoice.Build
- definition
R_zmodMixin
and canonicalR_zmodType
-> instance usingisZmodule.Build
- definition
R_ringMixin
and canonicalsR_ringType
,R_comRingType
-> instances usingZmodule_isRing.Build
,Ring_hasCommutativeMul.Build
- canonicals
Radd_monoid
,Radd_comoid
-> instance usingisComLaw.Build
- canonicals
Rmul_monoid
,Rmul_comoid
-> instance usingisComLaw.Build
- canonical
Rmul_mul_law
-> instance usingisMulLaw.Build
- canonical
Radd_add_law
-> instance usingisAddLaw.Build
- definition
R_unitRingMixin
and canonicalR_unitRing
-> instance usingRing_hasMulInverse.Build
- canonicals
R_comUnitRingType
andR_idomainType
-> instance usingComUnitRing_isIntegral.Build
- in lemma
R_fieldMixin
:GRing.Field.mixin_of
->GRing.field_axiom
- definition
Definition
and canonicalR_fieldType
-> instance usingUnitRing_isField.Build
- definition
R_numMixin
, canonicalsR_porderType
,R_numDomainType
,R_normedZmodType
,R_numFieldType
-> instance usingIntegralDomain_isNumRing.Build
- in lemma
R_total
:totalPOrderMixin
->total
- canonicals
R_latticeType
,R_distrLatticeType
,R_orderType
,R_realDomainType
,R_realFieldType
-> instance usingPOrder_isTotal.Build
- in lemmas
Rarchimedean_axiom
,Rreal_closed_axiom
:R_numDomainType
->[the numDomainType of R : Type]
- canonical
R_realArchiFieldType
-> instance usingRealField_isArchimedean.Build
- canonical
R_rcfType
-> instance usingRealField_isClosed.Build
- definition
real_realMixin
and canonicalreal_realType
-> instance usingArchimedeanField_isReal.Build
- canonicals
-
in
prodnormedzmodule.v
:- definition
normedZmodMixin
and canonicalnormedZmodType
-> instance usingNum.Zmodule_isNormed.Build
- definition
-
in
ereal.v
:- canonical
ereal_pointed
-> instance usingisPointed.Build
- definitions
ereal_dnbhs
,ereal_nbhs
-> now useset_system
- canonical
ereal_ereal_filter
-> instance usinghasNbhs.Build
- definition
ereal_topologicalMixin
, canonicalereal_topologicalType
, definitionsereal_pseudoMetricType_mixin
,ereal_uniformType_mixin
, canonicalsereal_uniformType
,ereal_pseudoMetricType
-> instance usingNbhs_isPseudoMetric.Build
- canonical
-
"moved" from
normedtype.v
toRstruct.v
:- canonicals
R_pointedType
,R_filteredType
,R_topologicalType
,R_uniformType
,R_pseudoMetricType
-> instance usingPseudoMetric.copy
- canonicals
-
in
realfun.v
:- now explicitly display the filter in the notation
X --> Y
:- lemma s
cvg_at_rightP
,cvg_at_leftP
,cvge_at_rightP
,cvge_at_leftP
- lemma s
- now explicitly display the filter in the notation
-
in
sequences.v
:- the lemmas and the notations (in particular, bigop notations) that were using
cvg
orcvg (... @ \oo)
/lim
are now usingcvgn
/limn
and now explicitly mention the filter in the notationX --> Y
- the lemmas and the notations (in particular, bigop notations) that were using
-
in
trigo.v
:- now make explicit mention of the filter:
- definitions
sin
,cos
- lemmas
cvg_series_cvg_series_group
,lt_sum_lim_series
,is_cvg_series_sin_coeff
,sinE
,cvg_sin_coeff'
,is_cvg_series_cos_coeff
,cosE
,cvg_cos_coeff'
- definitions
- now make explicit mention of the filter:
-
in
itv.v
:- canonical
itv_subType
-> instance using[isSub for ... ]
- definitions
itv_eqMixin
,itv_choiceMixin
and canonicalsitv_eqType
,itv_choiceType
-> instance using[Choice of ... by <:]
- definition
itv_porderMixin
and canonicalitv_porderType
-> instance using[SubChoice_isSubPOrder of ... by <: with ...]
- canonical
-
in
landau.v
:- now use
set_system
- structures
littleo_type
,bigO_type
,bigOmega_type
,bigTheta_type
- lemmas
littleo_class
,littleoE
,littleo
,bigO_exP
,bigO_class
,bigO_clone
,bigOP
,bigOE
,bigOmegaP
,bigThetaP
- definitions
littleo_clone
,the_littleo
,littleoP
,the_bigO
,bigOmega_clone
,the_bigOmega
,is_bigOmega
,bigTheta_clone
,is_bigTheta
- variants
littleo_spec
,bigOmega_spec
,bigTheta_spec
- notation
PhantomF
- facts
is_bigOmega_key
,is_bigTheta_key
- canonicals
the_littleo_littleo
,the_bigO_bigO
,the_littleo_bigO
,is_bigOmega_keyed
,the_bigOmega_bigOmega
,is_bigTheta_keyed
,the_bigTheta_bigTheta
- structures
- canonical
littleo_subtype
-> instance using[isSub for ...]
- canonical
bigO_subtype
-> instance using[isSub for ...]
- in
linear_for_continuous
:GRing.Scale.op s_law
->GRing.Scale.Law.sort
- argument
s_law
removed
- canonical
bigOmega_subtype
-> instance using[isSub for ...]
- canonical
bigTheta_subtype
-> instance using[isSub for ...]
- now use
-
in
forms.v
:- module
Bilinear
(packed class) -> mixinisBilinear
, structureBilinear
, definitionbilinear_for
, factorybilinear_isBilinear
, new moduleBilinear
containing the definitionmap
- canonical
mulmx_bilinear
-> lemmamulmx_is_bilinear
and instance usingbilinear_isBilinear.Build
- module
-
in
derive.v
- in notation
'd
,differentiable
,is_diff
:[filter of ...]
->nbhs F
- canonical
mulr_linear
-> instance usingisLinear.Build
- canonical
mulr_rev_linear
-> instance usingisLinear.Build
- canonical
mulr_bilinear
-> lemmamulr_is_bilinear
and instance usingbilinear_isBilinear.Build
set (set ...)
->set_system ...
- in notation
-
in
esum.v
:- several occurrences of
cvg
/lim
changed tocvgn
/limn
and usages of the notationX --> Y
changed toX @ F --> Y
(with an explicit filter)is_cvg_pseries_inside_norm
is_cvg_pseries_inside
pseries_diffs_equiv
is_cvg_pseries_diffs_equiv
pseries_snd_diffs
expRE
dvg_riemannR
- several occurrences of
-
in
numfun.v
:- canonicals
fimfun_mul
,fimfun_ring
,fimfun_ringType
, definitionfimfun_ringMixin
-> instances usingGRing.isMulClosed.Build
and[SubZmodule_isSubRing of ... by <:]
- definition
fimfun_comRingMixin
, canonicalfimfun_comRingType
-> instance using[SubRing_isSubComRing of ... by <:]
- canonicals
-
in
measure.v
- canonicals
salgebraType_eqType
,salgebraType_choiceType
,salgebraType_ptType
-> instance usingPointed.on
- filter now explicit in:
- definitions
sigma_additive
,semi_sigma_additive
- lemmas
nondecreasing_cvg_mu
,nonincreasing_cvg_mu
- definitions
- canonicals
ring_eqType
,ring_choiceType
,ring_ptType
-> instance usingPointed.on
- canonicals
-
in
lebesgue_measure.v
:- filter now explicit in lemmas
emeasurable_fun_cvg
,ae_pointwise_almost_uniform
- filter now explicit in lemmas
-
in
lebesgue_integral.v
:- canonical
mfun_subType
-> instance usingisSub.Build
- definitions
mfuneqMixin
,mfunchoiceMixin
, canonicalsmfuneqType
,mfunchoiceType
-> instance using[Choice of ... by <:]
- canonicals
mfun_add
,mfun_zmod
,mfun_mul
,mfun_subring
,mfun_zmodType
,mfun_ringType
,mfun_comRingType
, definitionsmfun_zmodMixin
,mfun_ringMixin
,mfun_comRingMixin
, -> instances usingGRing.isSubringClosed.Build
and[SubChoice_isSubComRing of ... <:]
- canonical
sfun_subType
-> instance usingisSub.Build
- definitions
sfuneqMixin
,sfunchoiceMixin
, canonicalssfuneqType
,sfunchoiceType
-> instance using[Choice of .. by <:]
- canonicals
sfun_add
,sfun_zmod
,sfun_mul
,sfun_subring
,sfun_zmodType
,sfun_ringType
,sfun_comRingType
, definitionssfun_zmodMixin
,sfun_ringMixin
,sfun_comRingMixin
-> instances usingGRing.isSubringClosed.Build
and[SubChoice_isSubComRing of ... by <:]
- now use
cvgn
/limn
instead ofcvg
/lim
:- lemmas
is_cvg_sintegral
,nd_sintegral_lim_lemma
,nd_sintegral_lim
,nd_ge0_integral_lim
,dvg_approx
,ecvg_approx
- lemmas
- filter now explicit in:
- lemmas
approximation
,approximation_sfun
,cvg_monotone_convergence
- lemmas
- canonical
-
in
kernel.v
:- notation
X --> Y
changed toX @ F --< Y
measurable_fun_xsection_integral
- definition
prob_pointed
and canonicalprobability_ptType
-> instance usingisPointed.Build
- canonicals
probability_eqType
,probability_choiceType
-> instance usinggen_eqMixin
andgen_choiceMixin
- notation
-
in
summability.v
:totally
now usesset_system
-
in
altreals/discrete.v
:- canonical
pred_sub_subTypeP
-> instance using[isSub for ...]
- definition
pred_sub_eqMixin
and canonicalpred_sub_eqType
-> instance using[Equality of ... by <:]
- definition
pred_sub_choiceMixin
and canonicalpred_sub_choiceType
-> instance using[Choice of ... <:]
- definition
pred_sub_countMixin
andpred_sub_countType
-> instance using[Countable of ... by <:]
- definitions
countable_countMixin
andcountable_countType
->countable_countMixin
- definitions
countable_choiceMixin
andcountable_choiceType
->countable_choiceMixin
- canonical
-
in
altreals/xfinmap.v
:- in lemmas
enum_fset0
andenum_fset1
: notation[fintype of ...]
-> type constraint... : finType
- in lemmas
-
in
misc/uniform_bigO.v
:- in definition
OuO
:[filter of ...]
->nbhs ...
- in definition
-
in
cantor.v
:- in definition
cantor_space
:product_uniformType
->prod_topology
- instances using
Pointed.on
,Nbhs.on
,Topological.on
- instances using
- in definition
-
in
topology.v
:- now use
nbhsType
instead oftopologicalType
- lemma
near_fun
- definition
discrete_space
- definition
discrete_uniform_mixin
- definition
discrete_ball
, lemmadiscrete_ball_center
, definitiondiscrete_pseudometric_mixin
- lemma
- now use
-
in
mathcomp_extra.v
:- coercion
choice.Choice.mixin
- lemmas
bigminr_maxr
, definitionsAC_subdef
,oAC
,opACE
, canonicalsopAC_law
,opAC_com_law
- lemmas
some_big_AC
,big_ACE
,big_undup_AC
,perm_big_AC
,big_const_idem
,big_id_idem
,big_mkcond_idem
,big_split_idem
,big_id_idem_AC
,bigID_idem
,big_rem_AC
,bigD1_AC
,sub_big
,sub_big_seq
,sub_big_seq_cond
,uniq_sub_big
,uniq_sub_big_cond
,sub_big_idem
,sub_big_idem_cond
,sub_in_big
,le_big_ord
,subset_big
,subset_big_cond
,le_big_nat
,le_big_ord_cond
- lemmas
bigmax_le
,bigmax_lt
,lt_bigmin
,le_bigmin
- lemmas
bigmax_mkcond
,bigmax_split
,bigmax_idl
,bigmax_idr
,bigmaxID
- lemmas
sub_bigmax
,sub_bigmax_seq
,sub_bigmax_cond
,sub_in_bigmax
,le_bigmax_nat
,le_bigmax_nat_cond
,le_bigmax_ord
,le_bigmax_ord_cond
,subset_bigmax
,subset_bigmax_cond
- lemmas
bigmaxD1
,le_bigmax_cond
,le_bigmax
,bigmax_sup
,bigmax_leP
,bigmax_ltP
,bigmax_eq_arg
,eq_bigmax
,le_bigmax2
- lemmas
bigmin_mkcond
,bigmin_split
,bigmin_idl
,bigmin_idr
,bigminID
- lemmas
sub_bigmin
,sub_bigmin_cond
,sub_bigmin_seq
,sub_in_bigmin
,le_bigmin_nat
,le_bigmin_nat_cond
,le_bigmin_ord
,le_bigmin_ord_cond
,subset_bigmin
,subset_bigmin_cond
- lemmas
bigminD1
,bigmin_le_cond
,bigmin_le
,bigmin_inf
,bigmin_geP
,bigmin_gtP
,bigmin_eq_arg
,eq_bigmin
- coercion
-
in
boolp.v
:- definitions
dep_arrow_eqType
,dep_arrow_choiceClass
,dep_arrow_choiceType
- definitions
-
in
classical_sets.v
:- notations
PointedType
,[pointedType of ...]
- notations
-
in
cardinality.v
:- lemma
countable_setT_countMixin
- lemma
-
in
constructive_ereal.v
:- canonicals
isLaw.Build
,mine_comoid
- canonicals
-
in
topology.v
:- structure
source
, definitionsource_filter
- definition
filter_of
, notation[filter of ...]
(now replaced bynbhs
), lemmafilter_of_filterE
- definition
open_of_nbhs
- definition
open_from
, lemmaopen_fromT
- canonical
eventually_filter_source
- canonical
discrete_topological_mixin
- canonical
set_filter_source
- definitions
filtered_of_normedZmod
,pseudoMetric_of_normedDomain
- definitions
fct_UniformFamily
(useuniform_fun_family
instead), canonicalsfct_UniformFamilyFilteredType
,fct_UniformFamilyTopologicalType
,fct_UniformFamilyUniformType
- structure
-
in
cantor.v
:- definition
pointed_discrete
- definition
-
in
normedtype.v
:filtered_of_normedZmod
- section
pseudoMetric_of_normedDomain
- lemmas
ball_norm_center
,ball_norm_symmetric
,ball_norm_triangle
,nbhs_ball_normE
- definition
pseudoMetric_of_normedDomain
- lemmas
- lemma
normrZ
- canonical
matrix_normedZmodType
- lemmas
eq_cvg
,eq_is_cvg
-
in
convex.v
:- field
convexspacechoiceclass
, canonicalsconv_eqType
,conv_choiceType
,conv_choiceType
- field
-
in
measure.v
:- field
ptclass
in mixinisSemiRingOfSets
- canonicals
ringOfSets_eqType
,ringOfSets_choiceType
,ringOfSets_ptType
,algebraOfSets_eqType
,algebraOfSets_choiceType
,algebraOfSets_ptType
,measurable_eqType
,measurable_choiceType
,measurable_ptType
- field
ptclass
in factoryisAlgebraOfSets
- field
ptclass
in factoryisMeasurable
- field
-
in
lebesgue_measure.v
:- no more "pointed class" argument in definition
ereal_isMeasurable
- no more "pointed class" argument in definition
-
in
lebesgue_stieltjes_measure.v
- lemma
sigmaT_finite_lebesgue_stieltjes_measure
turned into aLet
- lemma
-
in
altreals/discrete.v
:- notation
[countable of ...]
- notation
-
in
mathcomp_extra.v
:- lemmas
last_filterP
,path_lt_filter0
,path_lt_filterT
,path_lt_head
,path_lt_last_filter
,path_lt_le_last
- lemmas
-
new file
contra.v
- lemma
assume_not
- tactic
assume_not
- lemma
absurd_not
- tactics
absurd_not
,contrapose
- tactic notations
contra
,contra : constr(H)
,contra : ident(H)
,contra : { hyp_list(Hs) } constr(H)
,contra : { hyp_list(Hs) } ident(H)
,contra : { - } constr(H)
- lemma
absurd
- tactic notations
absurd
,absurd constr(P)
,absurd : constr(H)
,absurd : ident(H)
,absurd : { hyp_list(Hs) } constr(H)
,absurd : { hyp_list(Hs) } ident(H)
- lemma
-
in
topology.v
:- lemma
filter_bigI_within
- lemma
near_powerset_map
- lemma
near_powerset_map_monoE
- lemma
fst_open
- lemma
snd_open
- definition
near_covering_within
- lemma
near_covering_withinP
- lemma
compact_setM
- lemma
compact_regular
- lemma
fam_compact_nbhs
- definition
compact_open
, notation{compact-open, U -> V}
- notation
{compact-open, F --> f}
- definition
compact_openK
- definition
compact_openK_nbhs
- instance
compact_openK_nbhs_filter
- definition
compact_openK_topological_mixin
- canonicals
compact_openK_filter
,compact_openK_topological
,compact_open_pointedType
- definition
compact_open_topologicalType
- canonicals
compact_open_filtered
,compact_open_topological
- lemma
compact_open_cvgP
- lemma
compact_open_open
- lemma
compact_closedI
- lemma
compact_open_fam_compactP
- lemma
compact_equicontinuous
- lemma
uniform_regular
- lemma
continuous_curry
- lemma
continuous_uncurry_regular
- lemma
continuous_uncurry
- lemma
curry_continuous
- lemma
uncurry_continuous
- lemma
-
in
ereal.v
:- lemma
ereal_supy
- lemma
-
in file
normedtype.v
,- new lemma
continuous_within_itvP
.
- new lemma
-
in file
realfun.v
,-
definitions
itv_partition
,itv_partitionL
,itv_partitionR
,variation
,variations
,bounded_variation
,total_variation
,neg_tv
, andpos_tv
. -
new lemmas
left_right_continuousP
,nondecreasing_funN
,nonincreasing_funN
-
new lemmas
itv_partition_nil
,itv_partition_cons
,itv_partition1
,itv_partition_size_neq0
,itv_partitionxx
,itv_partition_le
,itv_partition_cat
,itv_partition_nth_size
,itv_partition_nth_ge
,itv_partition_nth_le
,nondecreasing_fun_itv_partition
,nonincreasing_fun_itv_partition
,itv_partitionLP
,itv_partitionRP
,in_itv_partition
,notin_itv_partition
,itv_partition_rev
, -
new lemmas
variation_zip
,variation_prev
,variation_next
,variation_nil
,variation_ge0
,variationN
,variation_le
,nondecreasing_variation
,nonincreasing_variation
,variationD
,variation_itv_partitionLR
,le_variation
,variation_opp_rev
,variation_rev_opp
-
new lemmas
variations_variation
,variations_neq0
,variationsN
,variationsxx
-
new lemmas
bounded_variationxx
,bounded_variationD
,bounded_variationN
,bounded_variationl
,bounded_variationr
,variations_opp
,nondecreasing_bounded_variation
-
new lemmas
total_variationxx
,total_variation_ge
,total_variation_ge0
,bounded_variationP
,nondecreasing_total_variation
,total_variationN
,total_variation_le
,total_variationD
,neg_tv_nondecreasing
,total_variation_pos_neg_tvE
,fine_neg_tv_nondecreasing
,neg_tv_bounded_variation
,total_variation_right_continuous
,neg_tv_right_continuous
,total_variation_opp
,total_variation_left_continuous
,total_variation_continuous
-
-
in
lebesgue_stieltjes_measure.v
:sigma_finite_measure
HB instance onlebesgue_stieltjes_measure
-
in
lebesgue_measure.v
:sigma_finite_measure
HB instance onlebesgue_measure
-
in
lebesgue_integral.v
:sigma_finite_measure
instance on product measure\x
- in
topology.v
:- lemmas
nbhsx_ballx
andnear_ball
take a parameter of typeR
instead of{posnum R}
- lemma
pointwise_compact_cvg
- lemmas
-
in
realfun.v
:- lemmas
nonincreasing_at_right_cvgr
,nonincreasing_at_left_cvgr
- lemmas
nondecreasing_at_right_cvge
,nondecreasing_at_right_is_cvge
,nonincreasing_at_right_cvge
,nonincreasing_at_right_is_cvge
- lemmas
-
in
realfun.v
:- lemmas
nonincreasing_at_right_is_cvgr
,nondecreasing_at_right_is_cvgr
- lemmas
-
in
boolp.v
:- tactic
eqProp
- variant
BoolProp
- lemmas
PropB
,notB
,andB
,orB
,implyB
,decide_or
,not_andE
,not_orE
,orCA
,orAC
,orACA
,orNp
,orpN
,or3E
,or4E
,andCA
,andAC
,andACA
,and3E
,and4E
,and5E
,implyNp
,implypN
,implyNN
,or_andr
,or_andl
,and_orr
,and_orl
,exists2E
,inhabitedE
,inhabited_witness
- tactic
-
in
topology.v
,- new lemmas
perfect_set2
, andent_closure
. - lemma
clopen_surj
- lemma
nbhs_dnbhs_neq
- lemma
dnbhs_ball
- new lemmas
-
in
constructive_ereal.v
- lemma
lee_subgt0Pr
- lemma
-
in
ereal.v
:- lemmas
ereal_sup_le
,ereal_inf_le
- lemmas
-
in
normedtype.v
:- hints for
at_right_proper_filter
andat_left_proper_filter
- definition
lower_semicontinuous
- lemma
lower_semicontinuousP
- lemma
not_near_at_rightP
- lemmas
withinN
,at_rightN
,at_leftN
,cvg_at_leftNP
,cvg_at_rightNP
- lemma
dnbhsN
- lemma
limf_esup_dnbhsN
- definitions
limf_esup
,limf_einf
- lemmas
limf_esupE
,limf_einfE
,limf_esupN
,limf_einfN
- hints for
-
in
sequences.v
:- lemma
minr_cvg_0_cvg_0
- lemma
mine_cvg_0_cvg_fin_num
- lemma
mine_cvg_minr_cvg
- lemma
mine_cvg_0_cvg_0
- lemma
maxr_cvg_0_cvg_0
- lemma
maxe_cvg_0_cvg_fin_num
- lemma
maxe_cvg_maxr_cvg
- lemma
maxe_cvg_0_cvg_0
- lemmas
limn_esup_lim
,limn_einf_lim
- lemma
-
in file
cantor.v
,- definitions
cantor_space
,cantor_like
,pointed_discrete
, andtree_of
. - new lemmas
cantor_space_compact
,cantor_space_hausdorff
,cantor_zero_dimensional
,cantor_perfect
,cantor_like_cantor_space
,tree_map_props
,homeomorphism_cantor_like
, andcantor_like_finite_prod
. - new theorem
cantor_surj
.
- definitions
-
in
numfun.v
:- lemma
patch_indic
- lemma
-
in
realfun.v
:- notations
nondecreasing_fun
,nonincreasing_fun
,increasing_fun
,decreasing_fun
- lemmas
cvg_addrl
,cvg_addrr
,cvg_centerr
,cvg_shiftr
,nondecreasing_cvgr
,nonincreasing_at_right_cvgr
,nondecreasing_at_right_cvgr
,nondecreasing_cvge
,nondecreasing_is_cvge
,nondecreasing_at_right_cvge
,nondecreasing_at_right_is_cvge
,nonincreasing_at_right_cvge
,nonincreasing_at_right_is_cvge
- lemma
cvg_at_right_left_dnbhs
- lemma
cvg_at_rightP
- lemma
cvg_at_leftP
- lemma
cvge_at_rightP
- lemma
cvge_at_leftP
- lemma
lime_sup
- lemma
lime_inf
- lemma
lime_supE
- lemma
lime_infE
- lemma
lime_infN
- lemma
lime_supN
- lemma
lime_sup_ge0
- lemma
lime_inf_ge0
- lemma
lime_supD
- lemma
lime_sup_le
- lemma
lime_inf_sup
- lemma
lim_lime_inf
- lemma
lim_lime_sup
- lemma
lime_sup_inf_at_right
- lemma
lime_sup_inf_at_left
- lemmas
lime_sup_lim
,lime_inf_lim
- notations
-
in file
measure.v
- add lemmas
ae_eq_subset
,measure_dominates_ae_eq
.
- add lemmas
-
in
lebesgue_measure.v
- lemma
lower_semicontinuous_measurable
- lemma
-
in
lebesgue_integral.v
:- definition
locally_integrable
- lemmas
integrable_locally
,locally_integrableN
,locally_integrableD
,locally_integrableB
- definition
iavg
- lemmas
iavg0
,iavg_ge0
,iavg_restrict
,iavgD
- definitions
HL_maximal
- lemmas
HL_maximal_ge0
,HL_maximalT_ge0
,lower_semicontinuous_HL_maximal
,measurable_HL_maximal
,maximal_inequality
- definition
-
in
charge.v
- definition
charge_of_finite_measure
(instance ofcharge
) - lemmas
dominates_cscalel
,dominates_cscaler
- definition
cpushforward
(instance ofcharge
) - lemma
dominates_pushforward
- lemma
cjordan_posE
- lemma
jordan_posE
- lemma
cjordan_negE
- lemma
jordan_negE
- lemma
Radon_Nikodym_sigma_finite
- lemma
Radon_Nikodym_fin_num
- lemma
Radon_Nikodym_integral
- lemma
ae_eq_Radon_Nikodym_SigmaFinite
- lemma
Radon_Nikodym_change_of_variables
- lemma
Radon_Nikodym_cscale
- lemma
Radon_Nikodym_cadd
- lemma
Radon_Nikodym_chain_rule
- definition
-
in
boolp.v
- lemmas
orC
andandC
now usecommutative
- lemmas
-
moved from
topology.v
tomathcomp_extra.v
- definition
monotonous
- definition
-
in
normedtype.v
:- lemmas
vitali_lemma_finite
andvitali_lemma_finite_cover
now returns duplicate-free lists of indices
- lemmas
-
in
sequences.v
:- change the implicit arguments of
trivIset_seqDU
limn_esup
now defined fromlime_sup
limn_einf
now defined fromlimn_esup
- change the implicit arguments of
-
moved from
lebesgue_integral.v
tomeasure.v
:- definition
ae_eq
- lemmas
ae_eq0
,ae_eq_comp
,ae_eq_funeposneg
,ae_eq_refl
,ae_eq_trans
,ae_eq_sub
,ae_eq_mul2r
,ae_eq_mul2l
,ae_eq_mul1l
,ae_eq_abse
- definition
-
in
charge.v
- definition
jordan_decomp
now usescadd
andcscale
- definition
Radon_Nikodym_SigmaFinite
now in a moduleRadon_Nikodym_SigmaFinite
with- definition
f
- lemmas
f_ge0
,f_fin_num
,f_integrable
,f_integral
- lemma
change_of_variables
- lemma
integralM
- lemma
chain_rule
- definition
- definition
-
in
exp.v
:lnX
->lnXn
-
in
charge.v
:dominates_caddl
->dominates_cadd
-
in
lebesgue_measure.v
- an hypothesis of lemma
integral_ae_eq
is weakened
- an hypothesis of lemma
-
in
lebesgue_integral.v
ge0_integral_bigsetU
generalized fromnat
toeqType
-
in
boolp.v
:- lemma
pdegen
- lemma
-
in
forms.v
:- lemmas
eq_map_mx
,map_mx_id
- lemmas
-
in
mathcomp_extra.v
- lemmas
ge0_ler_normr
,gt0_ler_normr
,le0_ger_normr
andlt0_ger_normr
- lemma
leq_ltn_expn
- lemma
onemV
- lemmas
-
in
classical_sets.v
:- lemma
set_cons1
- lemma
trivIset_bigcup
- definition
maximal_disjoint_subcollection
- lemma
ex_maximal_disjoint_subcollection
- lemmas
mem_not_I
,trivIsetT_bigcup
- lemma
-
in
constructive_ereal.v
:- lemmas
gt0_fin_numE
,lt0_fin_numE
- lemmas
le_er_map
,er_map_idfun
- lemmas
-
in
reals.v
:- lemma
le_inf
- lemmas
ceilN
,floorN
- lemma
-
in
topology.v
:- lemmas
closure_eq0
,separated_open_countable
- lemmas
-
in
normedtype.v
:- lemmas
ball0
,ball_itv
,closed_ball0
,closed_ball_itv
- definitions
cpoint
,radius
,is_ball
- definition
scale_ball
, notation notation*`
- lemmas
sub_scale_ball
,scale_ball1
,sub1_scale_ball
- lemmas
ball_inj
,radius0
,cpoint_ball
,radius_ball_num
,radius_ball
,is_ballP
,is_ball_ball
,scale_ball_set0
,ballE
,is_ball_closure
,scale_ballE
,cpoint_scale_ball
,radius_scale_ball
- lemmas
vitali_lemma_finite
,vitali_lemma_finite_cover
- definition
vitali_collection_partition
- lemmas
vitali_collection_partition_ub_gt0
,ex_vitali_collection_partition
,cover_vitali_collection_partition
,disjoint_vitali_collection_partition
- lemma
separate_closed_ball_countable
- lemmas
vitali_lemma_infinite
,vitali_lemma_infinite_cover
- lemma
open_subball
- lemma
closed_disjoint_closed_ball
- lemma
is_scale_ball
- lemmas
scale_ball0
,closure_ball
,bigcup_ballT
- lemmas
-
in
sequences.v
:- lemma
nneseries_tail_cvg
- lemma
-
in
exp.v
:- definition
expeR
- lemmas
expeR0
,expeR_ge0
,expeR_gt0
- lemmas
expeR_eq0
,expeRD
,expeR_ge1Dx
- lemmas
ltr_expeR
,ler_expeR
,expeR_inj
,expeR_total
- lemmas
mulr_powRB1
,fin_num_poweR
,poweRN
,poweR_lty
,lty_poweRy
,gt0_ler_poweR
- lemma
expRM
- definition
-
in
measure.v
:- lemmas
negligibleI
,negligible_bigsetU
,negligible_bigcup
- lemma
probability_setC
- lemma
measure_sigma_sub_additive_tail
- lemma
outer_measure_sigma_subadditive_tail
- lemmas
-
new
lebesgue_stieltjes_measure.v
:- notation
right_continuous
- lemmas
right_continuousW
,nondecreasing_right_continuousP
- mixin
isCumulative
, structureCumulative
, notationcumulative
idfun
instance ofCumulative
wlength
,wlength0
,wlength_singleton
,wlength_setT
,wlength_itv
,wlength_finite_fin_num
,finite_wlength_itv
,wlength_itv_bnd
,wlength_infty_bnd
,wlength_bnd_infty
,infinite_wlength_itv
,wlength_itv_ge0
,wlength_Rhull
,le_wlength_itv
,le_wlength
,wlength_semi_additive
,wlength_ge0
,lebesgue_stieltjes_measure_unique
- content instance of
hlength
cumulative_content_sub_fsum
,wlength_sigma_sub_additive
,wlength_sigma_finite
- measure instance of
hlength
- definition
lebesgue_stieltjes_measure
- notation
-
in
lebesgue_measure.v
:- lemma
lebesgue_measurable_ball
- lemmas
measurable_closed_ball
,lebesgue_measurable_closed_ball
- definition
vitali_cover
- lemma
vitali_theorem
- lemma
-
in
lebesgue_integral.v
:mfun
instances forexpR
andcomp
- lemma
abse_integralP
-
in
charge.v
:- factory
isCharge
- Notations
.-negative_set
,.-positive_set
- lemmas
dominates_cscale
,Radon_Nikodym_cscale
- definition
cadd
, lemmasdominates_caddl
,Radon_Nikodym_cadd
- factory
-
in
probability.v
:- definition
mmt_gen_fun
,chernoff
- definition
-
in
hoelder.v
:- lemmas
powR_Lnorm
,minkowski
- lemmas
-
in
normedtype.v
:- order of arguments of
squeeze_cvgr
- order of arguments of
-
moved from
derive.v
tonormedtype.v
:- lemmas
cvg_at_rightE
,cvg_at_leftE
- lemmas
-
in
measure.v
:- order of parameters changed in
semi_sigma_additive_is_additive
,isMeasure
- order of parameters changed in
-
in
lebesgue_measure.v
:- are now prefixed with
LebesgueMeasure
:hlength
,hlength0
,hlength_singleton
,hlength_setT
,hlength_itv
,hlength_finite_fin_num
,hlength_infty_bnd
,hlength_bnd_infty
,hlength_itv_ge0
,hlength_Rhull
,le_hlength_itv
,le_hlength
,hlength_ge0
,hlength_semi_additive
,hlength_sigma_sub_additive
,hlength_sigma_finite
,lebesgue_measure
finite_hlengthE
renamed tofinite_hlentgh_itv
pinfty_hlength
renamed toinfinite_hlength_itv
lebesgue_measure
now defined withlebesgue_stieltjes_measure
lebesgue_measure_itv
does not refer tohlength
anymore- remove one argument of
lebesgue_regularity_inner_sup
- are now prefixed with
-
moved from
lebesgue_measure.v
tolebesgue_stieltjes_measure.v
- notations
_.-ocitv
,_.-ocitv.-measurable
- definitions
ocitv
,ocitv_display
- lemmas
is_ocitv
,ocitv0
,ocitvP
,ocitvD
,ocitvI
- notations
-
in
lebesgue_integral.v
:integral_dirac
now uses the\d_
notation- order of arguments in the lemma
le_abse_integral
-
in
hoelder.v
:- definition
Lnorm
nowHB.lock
ed
- definition
-
in
probability.v
:markov
now usesNum.nneg
-
in
ereal.v
:le_er_map
->le_er_map_in
-
in
sequences.v
:lim_sup
->limn_sup
lim_inf
->limn_inf
lim_infN
->limn_infN
lim_supE
->limn_supE
lim_infE
->limn_infE
lim_inf_le_lim_sup
->limn_inf_sup
cvg_lim_inf_sup
->cvg_limn_inf_sup
cvg_lim_supE
->cvg_limn_supE
le_lim_supD
->le_limn_supD
le_lim_infD
->le_limn_infD
lim_supD
->limn_supD
lim_infD
->limn_infD
LimSup.lim_esup
->limn_esup
LimSup.lim_einf
->limn_einf
lim_einf_shift
->limn_einf_shift
lim_esup_le_cvg
->limn_esup_le_cvg
lim_einfN
->limn_einfN
lim_esupN
->limn_esupN
lim_einf_sup
->limn_einf_sup
cvgNy_lim_einf_sup
->cvgNy_limn_einf_sup
cvg_lim_einf_sup
->cvg_limn_einf_sup
is_cvg_lim_einfE
->is_cvg_limn_einfE
is_cvg_lim_esupE
->is_cvg_limn_esupE
ereal_nondecreasing_cvg
->ereal_nondecreasing_cvgn
ereal_nondecreasing_is_cvg
->ereal_nondecreasing_is_cvgn
ereal_nonincreasing_cvg
->ereal_nonincreasing_cvgn
ereal_nonincreasing_is_cvg
->ereal_nonincreasing_is_cvgn
ereal_nondecreasing_opp
->ereal_nondecreasing_oppn
nonincreasing_cvg_ge
->nonincreasing_cvgn_ge
nondecreasing_cvg_le
->nondecreasing_cvgn_le
nonincreasing_cvg
->nonincreasing_cvgn
nondecreasing_cvg
->nondecreasing_cvgn
nonincreasing_is_cvg
->nonincreasing_is_cvgn
nondecreasing_is_cvg
->nondecreasing_is_cvgn
near_nonincreasing_is_cvg
->near_nonincreasing_is_cvgn
near_nondecreasing_is_cvg
->near_nondecreasing_is_cvgn
nondecreasing_dvg_lt
->nondecreasing_dvgn_lt
-
in
lebesgue_measure.v
:measurable_fun_lim_sup
->measurable_fun_limn_sup
measurable_fun_lim_esup
->measurable_fun_limn_esup
-
in
charge.v
isCharge
->isSemiSigmaAdditive
-
in
classical_sets.v
:set_nil
generalized toeqType
-
in
topology.v
:ball_filter
generalized torealDomainType
-
in
lebesgue_integral.v
:- weaken an hypothesis of
integral_ae_eq
- weaken an hypothesis of
-
lebesgue_measure_unique
(generalized tolebesgue_stieltjes_measure_unique
) -
in
sequences.v
:- notations
elim_sup
,elim_inf
LimSup.lim_esup
,LimSup.lim_einf
elim_inf_shift
elim_sup_le_cvg
elim_infN
elim_supN
elim_inf_sup
cvg_ninfty_elim_inf_sup
cvg_ninfty_einfs
cvg_ninfty_esups
cvg_pinfty_einfs
cvg_pinfty_esups
cvg_elim_inf_sup
is_cvg_elim_infE
is_cvg_elim_supE
- notations
-
in
lebesgue_measure.v
:measurable_fun_elim_sup
- in
mathcomp_extra.v
:- lemmas
le_bigmax_seq
,bigmax_sup_seq
- lemma
gerBl
- lemmas
- in
classical_sets.v
:- lemma
setU_id2r
- lemma
- in
ereal.v
:- lemmas
uboundT
,supremumsT
,supremumT
,ereal_supT
,range_oppe
,ereal_infT
- lemmas
- in
constructive_ereal.v
:- lemma
eqe_pdivr_mull
- lemma
bigmaxe_fin_num
- lemma
- in file
topology.v
,- definition
regular_space
. - lemma
ent_closure
.
- definition
- in
normedtype.v
:- lemmas
open_itvoo_subset
,open_itvcc_subset
- new lemmas
normal_openP
,uniform_regular
,regular_openP
, andpseudometric_normal
.
- lemmas
- in
sequences.v
:- lemma
cvge_harmonic
- lemma
- in
convex.v
:- lemmas
conv_gt0
,convRE
- definition
convex_function
- lemmas
- in
exp.v
:- lemmas
concave_ln
,conjugate_powR
- lemmas
ln_le0
,ger_powR
,ler1_powR
,le1r_powR
,ger1_powR
,ge1r_powR
,ge1r_powRZ
,le1r_powRZ
- lemma
gt0_ltr_powR
- lemma
powR_injective
- lemmas
- in
measure.v
:- lemmas
outer_measure_subadditive
,outer_measureU2
- definition
ess_sup
, lemmaess_sup_ge0
- lemmas
- in
lebesgue_measure.v
:- lemma
compact_measurable
- declare
lebesgue_measure
as aSigmaFinite
instance - lemma
lebesgue_regularity_inner_sup
- lemma
measurable_ball
- lemma
measurable_mulrr
- lemma
- in
lebesgue_integral.v
,- new lemmas
integral_le_bound
,continuous_compact_integrable
, andlebesgue_differentiation_continuous
. - new lemmas
simple_bounded
,measurable_bounded_integrable
,compact_finite_measure
,approximation_continuous_integrable
- lemma
ge0_integral_count
- new lemmas
- in
kernel.v
:kseries
is now an instance ofKernel_isSFinite_subdef
- new file
hoelder.v
:- definition
Lnorm
, notations'N[mu]_p[f]
,'N_p[f]
- lemmas
Lnorm1
,Lnorm_ge0
,eq_Lnorm
,Lnorm_eq0_eq0
- lemma
hoelder
- lemmas
Lnorm_counting
,hoelder2
,convex_powR
- definition
- in
cardinality.v
:- implicits of
fimfunP
- implicits of
- in
constructive_ereal.v
:lee_adde
renamed tolee_addgt0Pr
and turned into a reflectlee_dadde
renamed tolee_daddgt0Pr
and turned into a reflect
- in
exp.v
:gt0_ler_powR
now usesNum.nneg
- removed dependency in
Rstruct.v
onnormedtype.v
: - added dependency in
normedtype.v
onRstruct.v
: mnormalize
moved fromkernel.v
tomeasure.v
and generalized- in
measure.v
:- implicits of
measurable_fst
andmeasurable_snd
- implicits of
- in
lebesgue_integral.v
- rewrote
negligible_integral
to replace the positivity condition with an integrability condition, and addedge0_negligible_integral
. - implicits of
integral_le_bound
- rewrote
- in
constructive_ereal.v
:lee_opp
->leeN2
lte_opp
->lteN2
- in
normedtype.v
:normal_urysohnP
->normal_separatorP
.
- in
exp.v
:gt0_ler_powR
->ge0_ler_powR
- in
signed.v
:- specific notation for
2%:R
, now subsumed by number notations in MC >= 1.15 Note that when importing ssrint,2
now denotes2%:~R
rather than2%:R
, which are convertible but don't have the same head constant.
- specific notation for
- in
theories/Make
- file
probability.v
(wasn't compiled in OPAM packages up to now)
- file
- in
mathcomp_extra.v
:- definition
min_fun
, notation\min
- new lemmas
maxr_absE
,minr_absE
- definition
- in file
boolp.v
,- lemmas
notP
,notE
- new lemma
implyE
. - new lemmas
contra_leP
andcontra_ltP
- lemmas
- in
classical_sets.v
:- lemmas
set_predC
,preimage_true
,preimage_false
- lemmas
properW
,properxx
- lemma
Zorn_bigcup
- lemmas
imsub1
andimsub1P
- lemma
bigcup_bigcup
- lemmas
- in
constructive_ereal.v
:- lemmas
lte_pmulr
,lte_pmull
,lte_nmulr
,lte_nmull
- lemmas
lte0n
,lee0n
,lte1n
,lee1n
- lemmas
fine0
andfine1
- lemmas
- in file
reals.v
:- lemmas
sup_sumE
,inf_sumE
- lemmas
- in
signed.v
:- lemmas
Posz_snum_subproof
andNegz_snum_subproof
- canonical instances
Posz_snum
andNegz_snum
- lemmas
- in file
topology.v
,- new lemma
uniform_nbhsT
. - definition
set_nbhs
. - new lemmas
filterI_iter_sub
,filterI_iterE
,finI_fromI
,filterI_iter_finI
,smallest_filter_finI
, andset_nbhsP
. - lemma
bigsetU_compact
- lemma
ball_symE
- new lemma
pointwise_cvgP
. - lemma
closed_bigcup
- definition
normal_space
. - new lemmas
filter_inv
, andcountable_uniform_bounded
.
- new lemma
- in file
normedtype.v
,- definition
edist
. - lemmas
edist_ge0
,edist_neqNy
,edist_lt_ball
,edist_fin
,edist_pinftyP
,edist_finP
,edist_fin_open
,edist_fin_closed
,edist_pinfty_open
,edist_sym
,edist_triangle
,edist_continuous
,edist_closeP
, andedist_refl
. - definitions
edist_inf
,uniform_separator
, andUrysohn
. - lemmas
continuous_min
,continuous_max
,edist_closel
,edist_inf_ge0
,edist_inf_neqNy
,edist_inf_triangle
,edist_inf_continuous
,edist_inf0
,Urysohn_continuous
,Urysohn_range
,Urysohn_sub0
,Urysohn_sub1
,Urysohn_eq0
,Urysohn_eq1
,uniform_separatorW
,normal_uniform_separator
,uniform_separatorP
,normal_urysohnP
, andsubset_closure_half
.
- definition
- in file
real_interval.v
,- new lemma
bigcup_itvT
.
- new lemma
- in
sequences.v
:- lemma
eseries_cond
- lemmas
eseries_mkcondl
,eseries_mkcondr
- new lemmas
geometric_partial_tail
, andgeometric_le_lim
.
- lemma
- in
exp.v
:- lemmas
powRrM
,gt0_ler_powR
,gt0_powR
,norm_powR
,lt0_norm_powR
,powRB
- lemmas
poweRrM
,poweRAC
,gt0_poweR
,poweR_eqy
,eqy_poweR
,poweRD
,poweRB
- notation
e `^?(r +? s)
- lemmas
expR_eq0
,powRN
- definition
poweRD_def
- lemmas
poweRD_defE
,poweRB_defE
,add_neq0_poweRD_def
,add_neq0_poweRB_def
,nneg_neq0_poweRD_def
,nneg_neq0_poweRB_def
- lemmas
powR_eq0
,poweR_eq0
- lemmas
- in file
numfun.v
,- new lemma
continuous_bounded_extension
.
- new lemma
- in
measure.v
:- lemma
lebesgue_regularity_outer
- new lemmas
measureU0
,nonincreasing_cvg_mu
, andepsilon_trick0
. - new lemmas
finite_card_sum
, andmeasureU2
.
- lemma
- in
lebesgue_measure.v
:- lemma
closed_measurable
- new lemmas
lebesgue_nearly_bounded
, andlebesgue_regularity_inner
. - new lemmas
pointwise_almost_uniform
, andae_pointwise_almost_uniform
. - lemmas
measurable_fun_ltr
,measurable_minr
- lemma
- in file
lebesgue_integral.v
,- new lemmas
lusin_simple
, andmeasurable_almost_continuous
. - new lemma
approximation_sfun_integrable
.
- new lemmas
-
in
classical_sets.v
:bigcup_bigcup_dep
renamed tobigcup_setM_dep
and equality in the statement reversedbigcup_bigcup
renamed tobigcup_setM
and equality in the statement reversed
-
in
sequences.v
:- lemma
nneseriesrM
generalized and renamed tonneseriesZl
- lemma
-
in
exp.v
:- lemmas
power_posD
(nowpowRD
),power_posB
(nowpowRB
)
- lemmas
-
moved from
lebesgue_measure.v
toreal_interval.v
:- lemmas
set1_bigcap_oc
,itv_bnd_open_bigcup
,itv_open_bnd_bigcup
,itv_bnd_infty_bigcup
,itv_infty_bnd_bigcup
- lemmas
-
moved from
functions.v
toclassical_sets.v
:subsetP
. -
moved from
normedtype.v
totopology.v
:Rhausdorff
.
- in
boolp.v
:mextentionality
->mextensionality
extentionality
->extensionality
- in
classical_sets.v
:bigcup_set_cond
->bigcup_seq_cond
bigcup_set
->bigcup_seq
bigcap_set_cond
->bigcap_seq_cond
bigcap_set
->bigcap_seq
- in
normedtype.v
:nbhs_closedballP
->nbhs_closed_ballP
- in
exp.v
:expK
->expRK
power_pos_eq0
->powR_eq0_eq0
power_pos_inv
->powR_invn
powere_pos_eq0
->poweR_eq0_eq0
power_pos
->powR
power_pos_ge0
->powR_ge0
power_pos_gt0
->powR_gt0
gt0_power_pos
->gt0_powR
power_pos0
->powR0
power_posr1
->powRr1
power_posr0
->powRr0
power_pos1
->powR1
ler_power_pos
->ler_powR
gt0_ler_power_pos
->gt0_ler_powR
power_posM
->powRM
power_posrM
->powRrM
power_posAC
->powRAC
power_posD
->powRD
power_posN
->powRN
power_posB
->powRB
power_pos_mulrn
->powR_mulrn
power_pos_inv1
->powR_inv1
power_pos_intmul
->powR_intmul
ln_power_pos
->ln_powR
power12_sqrt
->powR12_sqrt
norm_power_pos
->norm_powR
lt0_norm_power_pos
->lt0_norm_powR
powere_pos
->poweR
powere_pos_EFin
->poweR_EFin
powere_posyr
->poweRyr
powere_pose0
->poweRe0
powere_pose1
->poweRe1
powere_posNyr
->poweRNyr
powere_pos0r
->poweR0r
powere_pos1r
->poweR1r
fine_powere_pos
->fine_poweR
powere_pos_ge0
->poweR_ge0
powere_pos_gt0
->poweR_gt0
powere_posM
->poweRM
powere12_sqrt
->poweR12_sqrt
- in
lebesgue_measure.v
:measurable_power_pos
->measurable_powR
- in
lebesgue_integral.v
:ge0_integralM_EFin
->ge0_integralZl_EFin
ge0_integralM
->ge0_integralZl
integralM_indic
->integralZl_indic
integralM_indic_nnsfun
->integralZl_indic_nnsfun
integrablerM
->integrableZl
integrableMr
->integrableZr
integralM
->integralZl
- in
sequences.v
:- lemmas
is_cvg_nneseries_cond
,is_cvg_npeseries_cond
- lemmas
is_cvg_nneseries
,is_cvg_npeseries
- lemmas
nneseries_ge0
,npeseries_le0
- lemmas
eq_eseriesr
,lee_nneseries
- lemmas
- in
exp.v
:- lemmas
convex_expR
,ler_power_pos
(nowler_powR
) - lemma
ln_power_pos
(nowln_powR
) - lemma
ln_power_pos
- lemmas
- in
measure.v
:- lemmas
measureDI
,measureD
,measureUfinl
,measureUfinr
,null_set_setU
,measureU0
(from measure to content) - lemma
subset_measure0
(fromrealType
torealFieldType
)
- lemmas
- in file
lebesgue_integral.v
, updatedle_approx
.
- in
topology.v
:- lemma
my_ball_le
(useball_le
instead)
- lemma
- in
signed.v
:- lemma
nat_snum_subproof
- canonical instance
nat_snum
(useless, there is already a default instance pointing to the typ_snum mechanism (then identifying nats as >= 0))
- lemma
- in
mathcomp_extra.v
- definition
coefE
(will be in MC 2.1/1.18) - lemmas
deg2_poly_canonical
,deg2_poly_factor
,deg2_poly_min
,deg2_poly_minE
,deg2_poly_ge0
,Real.deg2_poly_factor
,deg_le2_poly_delta_ge0
,deg_le2_poly_ge0
(will be in MC 2.1/1.18) - lemma
deg_le2_ge0
- definition
- in
classical_sets.v
:- lemmas
set_eq_le
,set_neq_lt
, - new lemma
trivIset1
. - lemmas
preimage_mem_true
,preimage_mem_false
- lemmas
- in
functions.v
:- lemma
sumrfctE
- lemma
- in
set_interval.v
:- lemma
set_lte_bigcup
- lemma
- in
topology.v
:- lemma
globally0
- definitions
basis
, andsecond_countable
. - lemmas
clopen_countable
andcompact_countable_base
.
- lemma
- in
ereal.v
:- lemmas
compreDr
,compreN
- lemmas
- in
constructive_ereal.v
:- lemmas
lee_sqr
,lte_sqr
,lee_sqrE
,lte_sqrE
,sqre_ge0
,EFin_expe
,sqreD
,sqredD
- lemmas
- in
normedtype.v
:- lemma
lipschitz_set0
,lipschitz_set1
- lemma
- in
sequences.v
:- lemma
eq_eseriesl
- lemma
- in
measure.v
:- new lemmas
measurable_subring
, andsemiring_sigma_additive
. - added factory
Content_SubSigmaAdditive_isMeasure
- lemma
measurable_fun_bigcup
- definition
measure_dominates
, notation`<<
- lemma
measure_dominates_trans
- defintion
mfrestr
- lemmas
measurable_pair1
,measurable_pair2
- new lemmas
- in
lebesgue_measure.v
:- lemma
measurable_expR
- lemma
- in
lebesgue_integral.v
:- lemmas
emeasurable_fun_lt
,emeasurable_fun_le
,emeasurable_fun_eq
,emeasurable_fun_neq
- lemma
integral_ae_eq
- lemma
integrable_sum
- lemmas
integrableP
,measurable_int
- lemmas
- in file
kernel.v
,- definitions
kseries
,measure_fam_uub
,kzero
,kdirac
,prob_pointed
,mset
,pset
,pprobability
,kprobability
,kadd
,mnormalize
,knormalize
,kcomp
, andmkcomp
. - lemmas
eq_kernel
,measurable_fun_kseries
,integral_kseries
,measure_fam_uubP
,eq_sfkernel
,kzero_uub
,sfinite_kernel
,sfinite_kernel_measure
,finite_kernel_measure
,measurable_prod_subset_xsection_kernel
,measurable_fun_xsection_finite_kernel
,measurable_fun_xsection_integral
,measurable_fun_integral_finite_kernel
,measurable_fun_integral_sfinite_kernel
,lt0_mset
,gt1_mset
,kernel_measurable_eq_cst
,kernel_measurable_neq_cst
,kernel_measurable_fun_eq_cst
,measurable_fun_kcomp_finite
,mkcomp_sfinite
,measurable_fun_mkcomp_sfinite
,measurable_fun_preimage_integral
,measurable_fun_integral_kernel
, andintegral_kcomp
. - lemma
measurable_fun_mnormalize
- definitions
- in
probability.v
- definition of
covariance
- lemmas
expectation_sum
,covarianceE
,covarianceC
,covariance_fin_num
,covariance_cst_l
,covariance_cst_r
,covarianceZl
,covarianceZr
,covarianceNl
,covarianceNr
,covarianceNN
,covarianceDl
,covarianceDr
,covarianceBl
,covarianceBr
,variance_fin_num
,varianceZ
,varianceN
,varianceD
,varianceB
,varianceD_cst_l
,varianceD_cst_r
,varianceB_cst_l
,varianceB_cst_r
- lemma
covariance_le
- lemma
cantelli
- definition of
- in
charge.v
:- definition
measure_of_charge
- definition
crestr0
- definitions
jordan_neg
,jordan_pos
- lemmas
jordan_decomp
,jordan_pos_dominates
,jordan_neg_dominates
- lemma
radon_nikodym_finite
- definition
Radon_Nikodym
, notation'd nu '/d mu
- theorems
Radon_Nikodym_integrable
,Radon_Nikodym_integral
- definition
- in
lebesgue_measure.v
measurable_funrM
,measurable_funN
,measurable_fun_exprn
- in
lebesgue_integral.v
:- lemma
xsection_ndseq_closed
generalized from a measure to a family of measures - locked
integrable
and put it in bool rather than Prop
- lemma
- in
probability.v
variance
is now defined based oncovariance
- in
derive.v
:Rmult_rev
->mulr_rev
rev_Rmult
->rev_mulr
Rmult_is_linear
->mulr_is_linear
Rmult_linear
->mulr_linear
Rmult_rev_is_linear
->mulr_rev_is_linear
Rmult_rev_linear
->mulr_rev_linear
Rmult_bilinear
->mulr_bilinear
is_diff_Rmult
->is_diff_mulr
- in
measure.v
:measurable_fun_id
->measurable_id
measurable_fun_cst
->measurable_cst
measurable_fun_comp
->measurable_comp
measurable_funT_comp
->measurableT_comp
measurable_fun_fst
->measurable_fst
measurable_fun_snd
->measurable_snd
measurable_fun_swap
->measurable_swap
measurable_fun_pair
->measurable_fun_prod
isMeasure0
-> ``Content_isMeasure`Hahn_ext
->measure_extension
Hahn_ext_ge0
->measure_extension_ge0
Hahn_ext_sigma_additive
->measure_extension_semi_sigma_additive
Hahn_ext_unique
->measure_extension_unique
RingOfSets_from_semiRingOfSets
->SemiRingOfSets_isRingOfSets
AlgebraOfSets_from_RingOfSets
->RingOfSets_isAlgebraOfSets
Measurable_from_algebraOfSets
->AlgebraOfSets_isMeasurable
ring_sigma_additive
->ring_semi_sigma_additive
- in
lebesgue_measure.v
measurable_funN
->measurable_oppr
emeasurable_fun_minus
->measurable_oppe
measurable_fun_abse
->measurable_abse
measurable_EFin
->measurable_image_EFin
measurable_fun_EFin
->measurable_EFin
measurable_fine
->measurable_image_fine
measurable_fun_fine
->measurable_fine
measurable_fun_normr
->measurable_normr
measurable_fun_exprn
->measurable_exprn
emeasurable_fun_max
->measurable_maxe
emeasurable_fun_min
->measurable_mine
measurable_fun_max
->measurable_maxr
measurable_fun_er_map
->measurable_er_map
emeasurable_fun_funepos
->measurable_funepos
emeasurable_fun_funeneg
->measurable_funeneg
measurable_funrM
->measurable_mulrl
- in
lebesgue_integral.v
:measurable_fun_indic
->measurable_indic
- in
lebesgue_measure.v
:- lemma
measurable_fun_sqr
(usemeasurable_exprn
instead) - lemma
measurable_fun_opp
(usemeasurable_oppr
instead)
- lemma
- in
normedtype.v
:- instance
Proper_dnbhs_realType
- instance
- in
measure.v
:- instances
ae_filter_algebraOfSetsType
,ae_filter_measurableType
,ae_properfilter_measurableType
- instances
- in
lebesgue_measure.v
:- lemma
emeasurable_funN
(usemeasurableT_comp
) instead - lemma
measurable_fun_prod1
(usemeasurableT_comp
instead) - lemma
measurable_fun_prod2
(usemeasurableT_comp
instead)
- lemma
- in
lebesgue_integral.v
- lemma
emeasurable_funN
(was already inlebesgue_measure.v
, usemeasurableT_comp
instead)
- lemma
- in
mathcomp_extra.v
:- lemma
ler_sqrt
- lemma
lt_min_lt
- lemma
- in
classical_sets.v
:- lemmas
ltn_trivIset
,subsetC_trivIset
- lemmas
- in
contructive_ereal.v
:- lemmas
ereal_blatticeMixin
,ereal_tblatticeMixin
- canonicals
ereal_blatticeType
,ereal_tblatticeType
- lemmas
EFin_min
,EFin_max
- definition
sqrte
- lemmas
sqrte0
,sqrte_ge0
,lee_sqrt
,sqrteM
,sqr_sqrte
,sqrte_sqr
,sqrte_fin_num
- lemmas
- in
ereal.v
:- lemmas
compreBr
,compre_scale
- lemma
le_er_map
- lemmas
- in
set_interval.v
:- lemma
onem_factor
- lemmas
in1_subset_itv
,subset_itvW
- lemma
- in
topology.v
,- definitions
totally_disconnected
, andzero_dimensional
. - lemmas
component_closed
,zero_dimension_prod
,discrete_zero_dimension
,zero_dimension_totally_disconnected
,totally_disconnected_cvg
, andtotally_disconnected_prod
. - definitions
split_sym
,gauge
,gauge_uniformType_mixin
,gauge_topologicalTypeMixin
,gauge_filtered
,gauge_topologicalType
,gauge_uniformType
,gauge_pseudoMetric_mixin
, andgauge_pseudoMetricType
. - lemmas
iter_split_ent
,gauge_ent
,gauge_filter
,gauge_refl
,gauge_inv
,gauge_split
,gauge_countable_uniformity
, anduniform_pseudometric_sup
. - definitions
discrete_ent
,discrete_uniformType
,discrete_ball
,discrete_pseudoMetricType
, andpseudoMetric_bool
. - lemmas
finite_compact
,discrete_ball_center
,compact_cauchy_cvg
- definitions
- in
normedtype.v
:- lemmas
cvg_at_right_filter
,cvg_at_left_filter
,cvg_at_right_within
,cvg_at_left_within
- lemmas
- in
sequences.v
:- lemma
seqDUIE
- lemma
- in
derive.v
:- lemma
derivable_within_continuous
- lemma
- in
realfun.v
:- definition
derivable_oo_continuous_bnd
, lemmaderivable_oo_continuous_bnd_within
- definition
- in
exp.v
:- lemma
ln_power_pos
- definition
powere_pos
, notation_ `^ _
inereal_scope
- lemmas
powere_pos_EFin
,powere_posyr
,powere_pose0
,powere_pose1
,powere_posNyr
powere_pos0r
,powere_pos1r
,powere_posNyr
,fine_powere_pos
,powere_pos_ge0
,powere_pos_gt0
,powere_pos_eq0
,powere_posM
,powere12_sqrt
- lemmas
derive_expR
,convex_expR
- lemmas
power_pos_ge0
,power_pos0
,power_pos_eq0
,power_posM
,power_posAC
,power12_sqrt
,power_pos_inv1
,power_pos_inv
,power_pos_intmul
- lemma
- in
measure.v
:- lemmas
negligibleU
,negligibleS
- definition
almost_everywhere_notation
- instances
ae_filter_ringOfSetsType
,ae_filter_algebraOfSetsType
,ae_filter_measurableType
- instances
ae_properfilter_algebraOfSetsType
,ae_properfilter_measurableType
- lemmas
- in
lebesgue_measure.v
:- lemma
emeasurable_itv
- lemma
measurable_fun_er_map
- lemmas
measurable_fun_ln
,measurable_fun_power_pos
- lemma
- in
lebesgue_integral.v
:- lemma
sfinite_Fubini
- instance of
isMeasurableFun
fornormr
- lemma
finite_measure_integrable_cst
- lemma
ae_ge0_le_integral
- lemma
ae_eq_refl
- lemma
- new file
convex.v
:- mixin
isConvexSpace
, structureConvexSpace
, notationsconvType
,_ <| _ |> _
- lemmas
conv1
,second_derivative_convex
- mixin
- new file
charge.v
:- mixin
isAdditiveCharge
, structureAdditiveCharge
, notationsadditive_charge
,{additive_charge set T -> \bar R}
- mixin
isCharge
, structureCharge
, notationscharge
,{charge set T -> \bar R}
- lemmas
charge0
,charge_semi_additiveW
,charge_semi_additive2E
,charge_semi_additive2
,chargeU
,chargeDI
,chargeD
,charge_partition
- definitions
crestr
,cszero
,cscale
,positive_set
,negative_set
- lemmas
negative_set_charge_le0
,negative_set0
,bigcup_negative_set
,negative_setU
,positive_negative0
- definition
hahn_decomposition
- lemmas
hahn_decomposition_lemma
,Hahn_decomposition
,Hahn_decomposition_uniq
- mixin
- new file
itv.v
:- definition
wider_itv
- module
Itv
:- definitions
map_itv_bound
,map_itv
- lemmas
le_map_itv_bound
,subitv_map_itv
- definition
itv_cond
- record
def
- notation
spec
- record
typ
- definitions
mk
,from
,fromP
- definitions
- notations
{itv R & i}
,{i01 R}
,%:itv
,[itv of _]
,inum
,%:inum
- definitions
itv_eqMixin
,itv_choiceMixin
,itv_porderMixin
- canonical
itv_subType
,itv_eqType
,itv_choiceType
,itv_porderType
- lemma
itv_top_typ_subproof
- canonical
itv_top_typ
- lemma
typ_inum_subproof
- canonical
typ_inum
- notation
unify_itv
- lemma
itv_intro
- definition
empty_itv
- lemmas
itv_bottom
,itv_gt0
,itv_le0F
,itv_lt0
,itv_ge0F
,itv_ge0
,lt0F
,le0
,gt0F
,lt1
,ge1F
,le1
,gt1F
- lemma
widen_itv_subproof
- definition
widen_itv
- lemma
widen_itvE
- notation
%:i01
- lemma
zero_inum_subproof
- canonical
zero_inum
- lemma
one_inum_subproof
- canonical
one_inum
- definition
opp_itv_bound_subdef
- lemmas
opp_itv_ge0_subproof
,opp_itv_gt0_subproof
,opp_itv_boundr_subproof
,opp_itv_le0_subproof
,opp_itv_lt0_subproof
,opp_itv_boundl_subproof
- definition
opp_itv_subdef
- lemma
opp_inum_subproof
- canonical
opp_inum
- definitions
add_itv_boundl_subdef
,add_itv_boundr_subdef
,add_itv_subdef
- lemma
add_inum_subproof
- canonical
add_inum
- definitions
itv_bound_signl
,itv_bound_signr
,interval_sign
- variant
interval_sign_spec
- lemma
interval_signP
- definitions
mul_itv_boundl_subdef
,mul_itv_boundr_subdef
- lemmas
mul_itv_boundl_subproof
,mul_itv_boundrC_subproof
,mul_itv_boundr_subproof
,mul_itv_boundr'_subproof
- definition
mul_itv_subdef
- lemmas
map_itv_bound_min
,map_itv_bound_max
,mul_inum_subproof
- canonical
mul_inum
- lemmas
inum_eq
,inum_le
,inum_lt
- definition
- new file
probability.v
:- definition
random_variable
, notation{RV _ >-> _}
- lemmas
notin_range_measure
,probability_range
- definition
distribution
, instance ofisProbability
- lemma
probability_distribution
,integral_distribution
- definition
expectation
, notation'E_P[X]
- lemmas
expectation_cst
,expectation_indic
,integrable_expectation
,expectationM
,expectation_ge0
,expectation_le
,expectationD
,expectationB
- definition
variance
,'V_P[X]
- lemma
varianceE
- lemmas
variance_ge0
,variance_cst
- lemmas
markov
,chebyshev
, - mixin
MeasurableFun_isDiscrete
, structurediscreteMeasurableFun
, notation{dmfun aT >-> T}
- definition
discrete_random_variable
, notation{dRV _ >-> _}
- definitions
dRV_dom_enum
,dRV_dom
,dRV_enum
,enum_prob
- lemmas
distribution_dRV_enum
,distribution_dRV
,sum_enum_prob
,dRV_expectation
- definion
pmf
, lemmaexpectation_pmf
- definition
- in
mathcomp_extra.v
- lemmas
eq_bigmax
,eq_bigmin
changed to respectP
in the returned type.
- lemmas
- in
constructive_ereal.v
:maxEFin
changed tofine_max
minEFin
changed tofine_min
- in
exp.v
:- generalize
exp_fun
and rename topower_pos
exp_fun_gt0
has now a condition and is renamed topower_pos_gt0
- remove condition of
exp_funr0
and rename topower_posr0
- weaken condition of
exp_funr1
and rename topower_posr1
- weaken condition of
exp_fun_inv
and rename topower_pos_inv
exp_fun1
->power_pos1
- rename
ler_exp_fun
toler_power_pos
exp_funD
->power_posD
- weaken condition of
exp_fun_mulrn
and rename topower_pos_mulrn
- the notation
`^
has now scopereal_scope
- weaken condition of
riemannR_gt0
anddvg_riemannR
- generalize
- in
measure.v
:- generalize
negligible
tosemiRingOfSetsType
- definition
almost_everywhere
- generalize
- in
functions.v
:IsFun
->isFun
- in
set_interval.v
:conv
->line_path
conv_id
->line_path_id
ndconv
->ndline_path
convEl
->line_pathEl
convEr
->line_pathEr
conv10
->line_path10
conv0
->line_path0
conv1
->line_path1
conv_sym
->line_path_sym
conv_flat
->line_path_flat
leW_conv
->leW_line_path
ndconvE
->ndline_pathE
convK
->line_pathK
conv_inj
->line_path_inj
conv_bij
->line_path_bij
le_conv
->le_line_path
lt_conv
->lt_line_path
conv_itv_bij
->line_path_itv_bij
mem_conv_itv
->mem_line_path_itv
mem_conv_itvcc
->mem_line_path_itvcc
range_conv
->range_line_path
- in
topology.v
:Topological.ax1
->Topological.nbhs_pfilter
Topological.ax2
->Topological.nbhsE
Topological.ax3
->Topological.openE
entourage_filter
->entourage_pfilter
Uniform.ax1
->Uniform.entourage_filter
Uniform.ax2
->Uniform.entourage_refl
Uniform.ax3
->Uniform.entourage_inv
Uniform.ax4
->Uniform.entourage_split_ex
Uniform.ax5
->Uniform.nbhsE
PseudoMetric.ax1
->PseudoMetric.ball_center
PseudoMetric.ax2
->PseudoMetric.ball_sym
PseudoMetric.ax3
->PseudoMetric.ball_triangle
PseudoMetric.ax4
->PseudoMetric.entourageE
- in
measure.v
:emeasurable_fun_bool
->measurable_fun_bool
- in
lebesgue_measure.v
:punct_eitv_bnd_pinfty
->punct_eitv_bndy
punct_eitv_ninfty_bnd
->punct_eitv_Nybnd
eset1_pinfty
->eset1y
eset1_ninfty
->eset1Ny
ErealGenOInfty.measurable_set1_ninfty
->ErealGenOInfty.measurable_set1Ny
ErealGenOInfty.measurable_set1_pinfty
->ErealGenOInfty.measurable_set1y
ErealGenCInfty.measurable_set1_ninfty
->ErealGenCInfty.measurable_set1Ny
ErealGenCInfty.measurable_set1_pinfty
->ErealGenCInfty.measurable_set1y
- in
realsum.v
:psumB
,interchange_sup
,interchange_psum
- in
distr.v
:dlet_lim
,dlim_let
,exp_split
,exp_dlet
,dlet_dlet
,dmargin_dlet
,dlet_dmargin
,dfst_dswap
,dsnd_dswap
,dsndE
,pr_dlet
,exp_split
,exp_dlet
- in
measure.v
:- lemma
measurable_fun_ext
- lemma
- in
lebesgue_measure.v
:- lemmas
emeasurable_itv_bnd_pinfty
,emeasurable_itv_ninfty_bnd
(useemeasurable_itv
instead)
- lemmas
- in
lebesgue_integral.v
:- lemma
ae_eq_mul
- lemma
- in
mathcomp_extra.v
:- lemma
add_onemK
- function
swap
- lemma
- in file
boolp.v
,- new lemma
forallp_asboolPn2
.
- new lemma
- in
classical_sets.v
:- canonical
unit_pointedType
- lemmas
setT0
,set_unit
,set_bool
- lemmas
xsection_preimage_snd
,ysection_preimage_fst
- lemma
trivIset_mkcond
- lemmas
xsectionI
,ysectionI
- lemma
coverE
- new lemma
preimage_range
.
- canonical
- in
constructive_ereal.v
:- lemmas
EFin_sum_fine
,sumeN
- lemmas
adde_defDr
,adde_def_sum
,fin_num_sumeN
- lemma
fin_num_adde_defr
,adde_defN
- lemma
oppe_inj
- lemmas
expeS
,fin_numX
- lemmas
adde_def_doppeD
,adde_def_doppeB
- lemma
fin_num_sume_distrr
- lemmas
- in
functions.v
:- lemma
countable_bijP
- lemma
patchE
- lemma
- in
numfun.v
:- lemmas
xsection_indic
,ysection_indic
- lemmas
- in file
topology.v
,- definition
perfect_set
. - lemmas
perfectTP
,perfect_prod
, andperfect_diagonal
. - definitions
countable_uniformity
,countable_uniformityT
,sup_pseudoMetric_mixin
,sup_pseudoMetricType
, andproduct_pseudoMetricType
. - lemmas
countable_uniformityP
,countable_sup_ent
, andcountable_uniformity_metric
. - definitions
quotient_topology
, andquotient_open
. - lemmas
pi_continuous
,quotient_continuous
, andrepr_comp_continuous
. - definitions
hausdorff_accessible
,separate_points_from_closed
, andjoin_product
. - lemmas
weak_sep_cvg
,weak_sep_nbhsE
,weak_sep_openE
,join_product_continuous
,join_product_open
,join_product_inj
, andjoin_product_weak
. - definition
clopen
. - lemmas
clopenI
,clopenU
,clopenC
,clopen0
,clopenT
,clopen_comp
,connected_closure
,clopen_separatedP
, andclopen_connectedP
. - new lemmas
powerset_filter_fromP
andcompact_cluster_set1
.
- definition
- in
exp.v
:- lemma
expR_ge0
- lemma
- in
measure.v
:- mixin
isProbability
, structureProbability
, typeprobability
- lemma
probability_le1
- definition
discrete_measurable_unit
- structures
sigma_finite_additive_measure
andsigma_finite_measure
- lemmas
measurable_curry
,measurable_fun_fst
,measurable_fun_snd
,measurable_fun_swap
,measurable_fun_pair
,measurable_fun_if_pair
- lemmas
dirac0
,diracT
- lemma
fin_num_fun_sigma_finite
- structure
FiniteMeasure
, notation{finite_measure set _ -> \bar _}
- definition
sfinite_measure_def
- mixin
Measure_isSFinite_subdef
, structureSFiniteMeasure
, notation{sfinite_measure set _ -> \bar _}
- mixin
SigmaFinite_isFinite
with fieldfin_num_measure
, structureFiniteMeasure
, notation{finite_measure set _ -> \bar _}
- lemmas
sfinite_measure_sigma_finite
,sfinite_mzero
,sigma_finite_mzero
- factory
Measure_isFinite
,Measure_isSFinite
- defintion
sfinite_measure_seq
, lemmasfinite_measure_seqP
- mixin
FiniteMeasure_isSubProbability
, structureSubProbability
, notationsubprobability
- factory
Measure_isSubProbability
- factory
FiniteMeasure_isSubProbability
- factory
Measure_isSigmaFinite
- lemmas
fin_num_fun_lty
,lty_fin_num_fun
- definition
fin_num_fun
- structure
FinNumFun
- mixin
- in
lebesgue_measure.v
:- lemma
measurable_fun_opp
- lemma
- in
lebesgue_integral.v
- lemmas
integral0_eq
,fubini_tonelli
- product measures now take
{measure _ -> _}
arguments and their theory quantifies over a{sigma_finite_measure _ -> _}
. - notations
\x
,\x^
forproduct_measure1
andproduct_measure2
- lemmas
- in
fsbigop.v
:- implicits of
eq_fsbigr
- implicits of
- in file
topology.v
,- lemma
compact_near_coveringP
- lemma
- in
functions.v
:- notation
mem_fun_
- notation
- move from
lebesgue_integral.v
toclassical_sets.v
- lemmas
trivIset_preimage1
,trivIset_preimage1_in
- lemmas
- move from
lebesgue_integral.v
tonumfun.v
- lemmas
fimfunE
,fimfunEord
, factoryFiniteDecomp
- lemmas
fimfun_mulr_closed
- canonicals
fimfun_mul
,fimfun_ring
,fimfun_ringType
- defintion
fimfun_ringMixin
- lemmas
fimfunM
,fimfun1
,fimfun_prod
,fimfunX
,indic_fimfun_subproof
. - definitions
indic_fimfun
,scale_fimfun
,fimfun_comRingMixin
- canonical
fimfun_comRingType
- lemma
max_fimfun_subproof
- mixin
IsNonNegFun
, structureNonNegFun
, notation{nnfun _ >-> _}
- lemmas
- in
measure.v
:- order of arguments of
isContent
,Content
,measure0
,isMeasure0
,Measure
,isSigmaFinite
,SigmaFiniteContent
,SigmaFiniteMeasure
- order of arguments of
- in
measurable.v
:measurable_fun_comp
->measurable_funT_comp
- in
numfun.v
:IsNonNegFun
->isNonNegFun
- in
lebesgue_integral.v
:IsMeasurableFunP
->isMeasurableFun
- in
measure.v
:{additive_measure _ -> _}
->{content _ -> _}
isAdditiveMeasure
->isContent
AdditiveMeasure
->Content
additive_measure
->content
additive_measure_snum_subproof
->content_snum_subproof
additive_measure_snum
->content_snum
SigmaFiniteAdditiveMeasure
->SigmaFiniteContent
sigma_finite_additive_measure
->sigma_finite_content
{sigma_finite_additive_measure _ -> _}
->{sigma_finite_content _ -> _}
- in
constructive_ereal.v
:fin_num_adde_def
->fin_num_adde_defl
oppeD
->fin_num_oppeD
oppeB
->fin_num_oppeB
doppeD
->fin_num_doppeD
doppeB
->fin_num_doppeB
- in
topology.v
:finSubCover
->finite_subset_cover
- in
sequences.v
:eq_eseries
->eq_eseriesr
- in
esum.v
:summable_nneseries_esum
->summable_eseries_esum
summable_nneseries
->summable_eseries
- in
classical_sets.v
:xsection_preimage_snd
,ysection_preimage_fst
- in
constructive_ereal.v
:oppeD
,oppeB
- in
esum.v
:- lemma
esum_esum
- lemma
- in
measure.v
- lemma
measurable_fun_comp
- lemma
measure_bigcup
generalized, - lemma
eq_measure
sigma_finite
generalized fromnumFieldType
tonumDomainType
fin_num_fun_sigma_finite
generalized frommeasurableType
toalgebraOfSetsType
- lemma
- in
lebesgue_integral.v
:- lemma
measurable_sfunP
- lemma
integrable_abse
- lemma
- in
esum.v
:- lemma
fsbig_esum
- lemma
- OPAM package
coq-mathcomp-classical
containingboolp.v
- file
all_classical.v
- file
classical/set_interval.v
- in
mathcomp_extra.v
- lemma
lez_abs2n
- lemmas
pred_oappE
andpred_oapp_set
(fromclassical_sets.v
) - lemma
sumr_le0
- new definition
inv_fun
. - new lemmas
ler_ltP
, andreal_ltr_distlC
. - new definitions
proj
, anddfwith
. - new lemmas
dfwithin
,dfwithout
, anddfwithP
. - new lemma
projK
- generalize lemmas
bigmax_le
,bigmax_lt
,lt_bigmin
andle_bigmin
fromfinType
toType
- new definition
oAC
to turn an AC operatorT -> T -> T
, into a monoid com_lawoption T -> option T -> option T
. - new generic lemmas
opACE
,some_big_AC
,big_ACE
,big_undup_AC
,perm_big_AC
,sub_big
,sub_big_seq
,sub_big_seq_cond
,uniq_sub_big
,uniq_sub_big_cond
,sub_big_idem
,sub_big_idem_cond
,sub_in_big
,le_big_ord
,subset_big
,subset_big_cond
,le_big_nat_cond
,le_big_nat
, andle_big_ord_cond
, - specialization to
bigmax
:sub_bigmax
,sub_bigmax_seq
,sub_bigmax_cond
,sub_in_bigmax
,le_bigmax_nat
,le_bigmax_nat_cond
,le_bigmax_ord
,le_bigmax_ord_cond
,subset_bigmax
, andsubset_bigmax_cond
. - specialization to
bigmin
,sub_bigmax
,sub_bigmin_seq
,sub_bigmin_cond
,sub_in_bigmin
,le_bigmin_nat
,le_bigmin_nat_cond
,le_bigmin_ord
,le_bigmin_ord_cond
,subset_bigmin
, andsubset_bigmin_cond
.
- lemma
- in
classical_sets.v
- lemmas
IIDn
,IISl
- lemmas
set_compose_subset
,compose_diag
- notation
\;
for the composition of relations - notations
\bigcup_(i < n) F
and\bigcap_(i < n) F
- new lemmas
eq_image_id
,subKimage
,subimageK
, andeq_imageK
. - lemma
bigsetU_sup
- lemma
image2_subset
- lemmas
- in
constructive_ereal.v
- lemmas
fine_le
,fine_lt
,fine_abse
,abse_fin_num
- lemmas
gte_addl
,gte_addr
- lemmas
gte_daddl
,gte_daddr
- lemma
lte_spadder
,lte_spaddre
- lemma
lte_spdadder
- lemma
sum_fine
- lemmas
lteN10
,leeN10
- lemmas
le0_fin_numE
- lemmas
fine_lt0
,fine_le0
- lemma
fine_lt0E
- multi-rules
lteey
,lteNye
- new lemmas
real_ltry
,real_ltNyr
,real_leey
,real_leNye
,fin_real
,addNye
,addeNy
,gt0_muley
,lt0_muley
,gt0_muleNy
, andlt0_muleNy
. - new lemmas
daddNye
, anddaddeNy
. - lemma
lt0e
- canonicals
maxe_monoid
,maxe_comoid
,mine_monoid
,mine_comoid
- lemmas
- in
functions.v
,- new lemmas
inv_oppr
,preimageEoinv
,preimageEinv
, andinv_funK
.
- new lemmas
- in
cardinality.v
- lemmas
eq_card1
,card_set1
,card_eqSP
,countable_n_subset
,countable_finite_subset
,eq_card_fset_subset
,fset_subset_countable
- lemmas
- in
fsbigop.v
:- lemmas
fsumr_ge0
,fsumr_le0
,fsumr_gt0
,fsumr_lt0
,pfsumr_eq0
,pair_fsbig
,exchange_fsbig
- lemma
fsbig_setU_set1
- lemmas
- in
ereal.v
:- notation
\sum_(_ \in _) _
(fromfsbigop.v
) - lemmas
fsume_ge0
,fsume_le0
,fsume_gt0
,fsume_lt0
,pfsume_eq0
,lee_fsum_nneg_subset
,lee_fsum
,ge0_mule_fsumr
,ge0_mule_fsuml
(fromfsbigop.v
) - lemmas
finite_supportNe
,dual_fsumeE
,dfsume_ge0
,dfsume_le0
,dfsume_gt0
,dfsume_lt0
,pdfsume_eq0
,le0_mule_dfsumr
,le0_mule_dfsuml
- lemma
fsumEFin
- new lemmas
ereal_nbhs_pinfty_gt
,ereal_nbhs_ninfty_lt
,ereal_nbhs_pinfty_real
, andereal_nbhs_ninfty_real
.
- notation
- in
classical/set_interval.v
:- definitions
neitv
,set_itv_infty_set0
,set_itvE
,disjoint_itv
,conv
,factor
,ndconv
(fromset_interval.v
) - lemmas
neitv_lt_bnd
,set_itvP
,subset_itvP
,set_itvoo
,set_itv_cc
,set_itvco
,set_itvoc
,set_itv1
,set_itvoo0
,set_itvoc0
,set_itvco0
,set_itv_infty_infty
,set_itv_o_infty
,set_itv_c_infty
,set_itv_infty_o
,set_itv_infty_c
,set_itv_pinfty_bnd
,set_itv_bnd_ninfty
,setUitv1
,setU1itv
,set_itvI
,neitvE
,neitvP
,setitv0
,has_lbound_itv
,has_ubound_itv
,hasNlbound
,hasNubound
,opp_itv_bnd_infty
,opp_itv_infty_bnd
,opp_itv_bnd_bnd
,opp_itvoo
,setCitvl
,setCitvr
,set_itv_splitI
,setCitv
,set_itv_splitD
,mem_1B_itvcc
,conv_id
,convEl
,convEr
,conv10
,conv0
,conv1
,conv_sym
,conv_flat
,leW_conv
,leW_factor
,factor_flat
,factorl
,ndconvE
,factorr
,factorK
,convK
,conv_inj
,factor_inj
,conv_bij
,factor_bij
,le_conv
,le_factor
,lt_conv
,lt_factor
,conv_itv_bij
,factor_itv_bij
,mem_conv_itv
,mem_conv_itvcc
,range_conv
,range_factor
,mem_factor_itv
,set_itv_ge
,trivIset_set_itv_nth
,disjoint_itvxx
,lt_disjoint
,disjoint_neitv
,neitv_bnd1
,neitv_bnd2
(fromset_interval.v
) - lemmas
setNK
,lb_ubN
,ub_lbN
,mem_NE
,nonemptyN
,opp_set_eq0
,has_lb_ubN
,has_ubPn
,has_lbPn
(fromreals.v
)
- definitions
- in
topology.v
:- lemmas
continuous_subspaceT
,subspaceT_continuous
- lemma
weak_subspace_open
- lemma
weak_ent_filter
,weak_ent_refl
,weak_ent_inv
,weak_ent_split
,weak_ent_nbhs
- definition
map_pair
,weak_ent
,weak_uniform_mixin
,weak_uniformType
- lemma
sup_ent_filter
,sup_ent_refl
,sup_ent_inv
,sup_ent_split
,sup_ent_nbhs
- definition
sup_ent
,sup_uniform_mixin
,sup_uniformType
- definition
product_uniformType
- lemma
uniform_entourage
- definition
weak_ball
,weak_pseudoMetricType
- lemma
weak_ballE
- lemma
finI_from_countable
- lemmas
entourage_invI
,split_ent_subset
- definition
countable_uniform_pseudoMetricType_mixin
- lemmas
closed_bigsetU
,accessible_finite_set_closed
- new lemmas
eq_cvg
,eq_is_cvg
,eq_near
,cvg_toP
,cvgNpoint
,filter_imply
,nbhs_filter
,near_fun
,cvgnyPgt
,cvgnyPgty
,cvgnyPgey
,fcvg_ballP
,fcvg_ball
, andfcvg_ball2P
. - new lemmas
dfwith_continuous
, andproj_open
.
- lemmas
- in
topology.v
, addednear do
andnear=> x do
tactic notations to perform some tactics under a\forall x \near F, ...
quantification. - in
reals.v
:- lemma
floor0
- lemma
- in
normedtype.v
,- lemmas
closed_ballR_compact
andlocally_compactR
- new lemmas
nbhsNimage
,nbhs_pinfty_real
,nbhs_ninfty_real
,pinfty_ex_ge
,cvgryPger
,cvgryPgtr
,cvgrNyPler
,cvgrNyPltr
,cvgry_ger
,cvgry_gtr
,cvgrNy_ler
,cvgrNy_ltr
,cvgNry
,cvgNrNy
,cvgry_ge
,cvgry_gt
,cvgrNy_le
,cvgrNy_lt
,cvgeyPger
,cvgeyPgtr
,cvgeyPgty
,cvgeyPgey
,cvgeNyPler
,cvgeNyPltr
,cvgeNyPltNy
,cvgeNyPleNy
,cvgey_ger
,cvgey_gtr
,cvgeNy_ler
,cvgeNy_ltr
,cvgNey
,cvgNeNy
,cvgerNyP
,cvgeyPge
,cvgeyPgt
,cvgeNyPle
,cvgeNyPlt
,cvgey_ge
,cvgey_gt
,cvgeNy_le
,cvgeNy_lt
,cvgenyP
,normfZV
,fcvgrPdist_lt
,cvgrPdist_lt
,cvgrPdistC_lt
,cvgr_dist_lt
,cvgr_distC_lt
,cvgr_dist_le
,cvgr_distC_le
,nbhs_norm0P
,cvgr0Pnorm_lt
,cvgr0_norm_lt
,cvgr0_norm_le
,nbhsDl
,nbhsDr
,nbhs0P
,nbhs_right0P
,nbhs_left0P
,nbhs_right_gt
,nbhs_left_lt
,nbhs_right_neq
,nbhs_left_neq
,nbhs_right_ge
,nbhs_left_le
,nbhs_right_lt
,nbhs_right_le
,nbhs_left_gt
,nbhs_left_ge
,nbhsr0P
,cvgrPdist_le
,cvgrPdist_ltp
,cvgrPdist_lep
,cvgrPdistC_le
,cvgrPdistC_ltp
,cvgrPdistC_lep
,cvgr0Pnorm_le
,cvgr0Pnorm_ltp
,cvgr0Pnorm_lep
,cvgr_norm_lt
,cvgr_norm_le
,cvgr_norm_gt
,cvgr_norm_ge
,cvgr_neq0
,real_cvgr_lt
,real_cvgr_le
,real_cvgr_gt
,real_cvgr_ge
,cvgr_lt
,cvgr_gt
,cvgr_norm_lty
,cvgr_norm_ley
,cvgr_norm_gtNy
,cvgr_norm_geNy
,fcvgr2dist_ltP
,cvgr2dist_ltP
,cvgr2dist_lt
,cvgNP
,norm_cvg0P
,cvgVP
,is_cvgVE
,cvgr_to_ge
,cvgr_to_le
,nbhs_EFin
,nbhs_ereal_pinfty
,nbhs_ereal_ninfty
,fine_fcvg
,fcvg_is_fine
,fine_cvg
,cvg_is_fine
,cvg_EFin
,neq0_fine_cvgP
,cvgeNP
,is_cvgeNE
,cvge_to_ge
,cvge_to_le
,is_cvgeM
,limeM
,cvge_ge
,cvge_le
,lim_nnesum
,ltr0_cvgV0
,cvgrVNy
,ler_cvg_to
,gee_cvgy
,lee_cvgNy
,squeeze_fin
, andlee_cvg_to
.
- lemmas
- in
normedtype.v
, added notations^'+
,^'-
,+oo_R
,-oo_R
- in
sequences.v
,- lemma
invr_cvg0
andinvr_cvg_pinfty
- lemma
cvgPninfty_lt
,cvgPpinfty_near
,cvgPninfty_near
,cvgPpinfty_lt_near
andcvgPninfty_lt_near
- new lemma
nneseries_pinfty
. - lemmas
is_cvg_ereal_npos_natsum_cond
,lee_npeseries
,is_cvg_npeseries_cond
,is_cvg_npeseries
,npeseries_le0
,is_cvg_ereal_npos_natsum
- lemma
nnseries_is_cvg
- lemma
- in
measure.v
:- definition
discrete_measurable_bool
with an instance of measurable type - lemmas
measurable_fun_if
,measurable_fun_ifT
- lemma
measurable_fun_bool
- definition
- in
lebesgue_measure.v
:- definition
ErealGenInftyO.R
and lemmaErealGenInftyO.measurableE
- lemma
sub1set
- definition
- in
lebesgue_integral.v
:- lemma
integral_cstNy
- lemma
ae_eq0
- lemma
integral_cst
- lemma
le_integral_comp_abse
- lemmas
integral_fune_lt_pinfty
,integral_fune_fin_num
- lemmas
emeasurable_fun_fsum
,ge0_integral_fsum
- lemma
- in
constructive_ereal.v
:- lemmas
lee_paddl
,lte_paddl
,lee_paddr
,lte_paddr
,lte_spaddr
,lee_pdaddl
,lte_pdaddl
,lee_pdaddr
,lte_pdaddr
,lte_spdaddr
generalized torealDomainType
- generalize
lte_addl
,lte_addr
,gte_subl
,gte_subr
,lte_daddl
,lte_daddr
,gte_dsubl
,gte_dsubr
- lemmas
- in
topology.v
- definition
fct_restrictedUniformType
changed to useweak_uniformType
- definition
family_cvg_topologicalType
changed to usesup_uniformType
- lemmas
continuous_subspace0
,continuous_subspace1
- definition
- in
realfun.v
:- Instance for
GRing.opp
over real intervals - lemmas
itv_continuous_inj_le
,itv_continuous_inj_ge
,itv_continuous_inj_mono
,segment_continuous_inj_le
,segment_continuous_inj_ge
,segment_can_le
,segment_can_ge
,segment_can_mono
,segment_continuous_surjective
,segment_continuous_le_surjective
,segment_continuous_ge_surjective
,continuous_inj_image_segment
,continuous_inj_image_segmentP
,segment_continuous_can_sym
,segment_continuous_le_can_sym
,segment_continuous_ge_can_sym
,segment_inc_surj_continuous
,segment_dec_surj_continuous
,segment_mono_surj_continuous
,segment_can_le_continuous
,segment_can_ge_continuous
,segment_can_continuous
all have "{in I, continuous f}" replaced by "{within I, continuous f}"
- Instance for
- in
sequence.v
:nneseries_pinfty
generalized toeseries_pinfty
- in
measure.v
:covered_by_countable
generalized frompointedType
tochoiceType
- in
lebesgue_measure.v
:- definition
fimfunE
now uses fsbig - generalize and rename
eitv_c_infty
toeitv_bnd_infty
andeitv_infty_c
toeitv_infty_bnd
- generalize
ErealGenOInfty.G
,ErealGenCInfty.G
,ErealGenInftyO.G
- definition
- in
lebesgue_integral.v
:- implicits of
ae_eq_integral
- implicits of
- moved from
mathcomp_extra.v
toclassical_sets.v
:pred_oappE
, andpred_oapp_set
. - moved from
normedtype.v
tomathcomp_extra.v
:itvxx
,itvxxP
,subset_itv_oo_cc
, andbound_side
. - moved from
sequences.v
tonormedtype.v
:ler_lim
. sub_dominatedl
andsub_dominatedr
generalized fromnumFieldType
tonumDomainType
.abse_fin_num
changed from an equivalence to an equality.lee_opp2
andlte_opp2
generalized fromrealDomainType
tonumDomainType
.cvgN
,cvg_norm
,is_cvg_norm
generalized fromnormedModType
/topologicalType
topseudoMetricNormedZmodType
/Type
cvgV
,is_cvgV
,cvgM
,is_cvgM
,is_cvgMr
,is_cvgMl
,is_cvgMrE
,is_cvgMlE
,limV
,cvg_abse
,is_cvg_abse
generalized fromTopologicalType
toType
lim_norm
generalized fromnormedModType
/TopoligicalType
topseudoMetricNormedZmodType
/Type
- updated
cvg_ballP
,cvg_ball2P
,cvg_ball
, andcvgi_ballP
to match af @ F
instead of just anF
. The old lemmas are still available with prefixf
. - generalized
lee_lim
to any proper filter and moved fromsequences.v
tonormedtype.v
. - generalized
ereal_nbhs_pinfty_ge
andereal_nbhs_ninfty_le
. - renamed
nbhsN
tonbhsNimage
andnbhsN
is now replaced bynbhs (- x) = -%R @ x
- fixed the statements of
nbhs_normP
which used to be an accidental alias ofnbhs_ballP
together withnbhs_normE
,nbhs_le_nbhs_norm
,nbhs_norm_le_nbhs
,near_nbhs_norm
andnbhs_norm_ball
which were not aboutnbhs_ball_ ball_norm
but should have been. EFin_lim
generalized fromrealType
torealFieldType
- file
theories/mathcomp_extra.v
moved toclassical/mathcomp_extra.v
- file
theories/boolp.v
->classical/boolp.v
- file
theories/classical_sets.v
->classical/classical_sets.v
- file
theories/functions.v
->classical/functions.v
- file
theories/cardinality.v
->classical/cardinality.v
- file
theories/fsbigop.v
->classical/fsbigop.v
- file
theories/set_interval.v
->theories/real_interval.v
- in
mathcomp_extra.v
:homo_le_bigmax
->le_bigmax2
- in
constructive_ereal.v
:lte_spdaddr
->lte_spdaddre
esum_ninftyP
->esum_eqNyP
esum_ninfty
->esum_eqNy
esum_pinftyP
->esum_eqyP
esum_pinfty
->esum_eqy
desum_pinftyP
->desum_eqyP
desum_pinfty
->desum_eqy
desum_ninftyP
->desum_eqNyP
desum_ninfty
->desum_eqNy
eq_pinftyP
->eqyP
ltey
->ltry
ltNye
->ltNyr
- in
topology.v
:- renamed
continuous_subspaceT
tocontinuous_in_subspaceT
pasting
->withinU_continuous
cvg_map_lim
->cvg_lim
cvgi_map_lim
->cvgi_lim
app_cvg_locally
->cvg_ball
prod_topo_apply_continuous
->proj_continuous
- renamed
- in
normedtype.v
,normmZ
->normrZ
norm_cvgi_map_lim
->norm_cvgi_lim
nbhs_image_ERFin
->nbhs_image_EFin
- moved from
sequences.v
tonormedtype.v
:squeeze
->squeeze_cvgr
- in
sequences.v
:nneseries0
->eseries0
nneseries_pred0
->eseries_pred0
eq_nneseries
->eq_eseries
nneseries_mkcond
->eseries_mkcond
seqDUE
->seqDU_seqD
elim_sup
->lim_esup
elim_inf
->lim_einf
elim_inf_shift
->lim_einf_shift
elim_sup_le_cvg
->lim_esup_le_cvg
elim_infN
->lim_einfN
elim_supN
->lim_esupN
elim_inf_sup
->lim_einf_sup
cvg_ninfty_elim_inf_sup
->cvgNy_lim_einf_sup
cvg_ninfty_einfs
->cvgNy_einfs
cvg_ninfty_esups
->cvgNy_esups
cvg_pinfty_einfs
->cvgy_einfs
cvg_pinfty_esups
->cvgy_esups
cvg_elim_inf_sup
->cvg_lim_einf_sup
is_cvg_elim_infE
->is_cvg_lim_einfE
is_cvg_elim_supE
->is_cvg_lim_esupE
- in
measure.v
,caratheodory_lim_lee
->caratheodory_lime_le
- in
lebesgue_measure.v
,measurable_fun_elim_sup
->measurable_fun_lim_esup
- moved from
lebesgue_measure.v
toreal_interval.v
:itv_cpinfty_pinfty
->itv_cyy
itv_opinfty_pinfty
->itv_oyy
itv_cninfty_pinfty
->itv_cNyy
itv_oninfty_pinfty
->itv_oNyy
- in
lebesgue_integral.v
:integral_cst_pinfty
->integral_csty
sintegral_cst
->sintegral_EFin_cst
integral_cst
->integral_cstr
- in
constructive_ereal.v
,daddooe
->daddye
daddeoo
->daddey
ltey
,ltNye
- moved from
normedtype.v
tomathcomp_extra.v
:ler0_addgt0P
->ler_gtP
- in
normedtype.v
,cvg_gt_ge
->cvgr_ge
cvg_lt_le
->cvgr_le
cvg_dist0
->norm_cvg0
ereal_cvgN
->cvgeN
ereal_is_cvgN
->is_cvgeN
ereal_cvgrM
->cvgeMl
ereal_is_cvgrM
->is_cvgeMl
ereal_cvgMr
->cvgeMr
ereal_is_cvgMr
->is_cvgeMr
ereal_limrM
->limeMl
ereal_limMr
->limeMr
ereal_limN
->limeN
linear_continuous0
->continuous_linear_bounded
linear_bounded0
->bounded_linear_continuous
- moved from
derive.v
tonormedtype.v
:le0r_cvg_map
->limr_ge
ler0_cvg_map
->limr_le
- moved from
sequences.v
tonormedtype.v
:ereal_cvgM
->cvgeM
cvgPpinfty
->cvgryPge
cvgPninfty
->cvgrNyPle
ger_cvg_pinfty
->ger_cvgy
ler_cvg_ninfty
->ler_cvgNy
cvgPpinfty_lt
->cvgryPgt
cvgPninfty_lt
->cvgrNyPlt
cvgPpinfty_near
->cvgryPgey
cvgPninfty_near
->cvgrNyPleNy
cvgPpinfty_lt_near
->cvgryPgty
cvgPninfty_lt_near
->cvgrNyPltNy
invr_cvg0
->gtr0_cvgV0
invr_cvg_pinfty
->cvgrVy
nat_dvg_real
->cvgrnyP
ereal_cvg_abs0
->cvg_abse0P
ereal_lim_ge
->lime_ge
ereal_lim_le
->lime_le
dvg_ereal_cvg
->cvgeryP
ereal_cvg_real
->fine_cvgP
ereal_squeeze
->squeeze_cvge
ereal_cvgD
->cvgeD
ereal_cvgB
->cvgeB
ereal_is_cvgD
->is_cvgeD
ereal_cvg_sub0
->cvge_sub0
ereal_limD
->limeD
ereal_lim_sum
->cvg_nnesum
- moved from
sequences.v
totopology.v
:nat_cvgPpinfty
->cvgnyPge
- in
topology.v
prod_topo_apply
->proj
- in
lebesgue_integral.v
:integral_sum
->integral_nneseries
- in
constructive_ereal.v
:- lemma
lte_spaddr
, renamedlte_spaddre
- lemma
- in
topology.v
, deprecatedcvg_ballPpos
(use a combination ofcvg_ballP
andposnumP
),cvg_dist
(usecvgr_dist_lt
or a variation instead)
- in
normedtype.v
, deprecatedcvg_distP
(usecvgrPdist_lt
or a variation instead),cvg_dist
(usecvg_dist_lt
or a variation instead),cvg_distW
(usecvgrPdist_le
or a variation instead),cvg_bounded_real
(usecvgr_norm_lty
or a variation instead),continuous_cvg_dist
(simply use the fact that(x --> l) -> (x = l)
),cvg_dist2P
(usecvgr2dist_ltP
or a variant instead),cvg_dist2
(usecvgr2dist_lt
or a variant instead),
- in
derive.v
, deprecatedler_cvg_map
(subsumed byler_lim
),
- in
sequences.v
, deprecatedcvgNpinfty
(usecvgNry
instead),cvgNninfty
(usecvgNrNy
instead),ereal_cvg_ge0
(usecvge_ge
instead),ereal_cvgPpinfty
(usecvgeyPge
or a variant instead),ereal_cvgPninfty
(usecvgeNyPle
or a variant instead),ereal_cvgD_pinfty_fin
(usecvgeD
instead),ereal_cvgD_ninfty_fin
(usecvgeD
instead),ereal_cvgD_pinfty_pinfty
(usecvgeD
instead),ereal_cvgD_ninfty_ninfty
(usecvgeD
instead),ereal_cvgM_gt0_pinfty
(usecvgeM
instead),ereal_cvgM_lt0_pinfty
(usecvgeM
instead),ereal_cvgM_gt0_ninfty
(usecvgeM
instead),ereal_cvgM_lt0_ninfty
(usecvgeM
instead),
- in
classical_sets.v
:- lemmas
pred_oappE
andpred_oapp_set
(moved tomathcomp_extra.v
)
- lemmas
- in
fsbigop.v
:- notation
\sum_(_ \in _) _
(moved toereal.v
) - lemma
lee_fsum_nneg_subset
,lee_fsum
,ge0_mule_fsumr
,ge0_mule_fsuml
,fsume_ge0
,fsume_le0
,fsume_gt0
,fsume_lt0
,pfsume_eq0
(moved toereal.v
) - lemma
pair_fsum
(subsumed bypair_fsbig
) - lemma
exchange_fsum
(subsumed byexchange_fsbig
)
- notation
- in
reals.v
:- lemmas
setNK
,lb_ubN
,ub_lbN
,mem_NE
,nonemptyN
,opp_set_eq0
,has_lb_ubN
,has_ubPn
,has_lbPn
(moved toclassical/set_interval.v
)
- lemmas
- in
set_interval.v
:- definitions
neitv
,set_itv_infty_set0
,set_itvE
,disjoint_itv
,conv
,factor
,ndconv
(moved toclassical/set_interval.v
) - lemmas
neitv_lt_bnd
,set_itvP
,subset_itvP
,set_itvoo
,set_itv_cc
,set_itvco
,set_itvoc
,set_itv1
,set_itvoo0
,set_itvoc0
,set_itvco0
,set_itv_infty_infty
,set_itv_o_infty
,set_itv_c_infty
,set_itv_infty_o
,set_itv_infty_c
,set_itv_pinfty_bnd
,set_itv_bnd_ninfty
,setUitv1
,setU1itv
,set_itvI
,neitvE
,neitvP
,setitv0
,has_lbound_itv
,has_ubound_itv
,hasNlbound
,hasNubound
,opp_itv_bnd_infty
,opp_itv_infty_bnd
,opp_itv_bnd_bnd
,opp_itvoo
,setCitvl
,setCitvr
,set_itv_splitI
,setCitv
,set_itv_splitD
,mem_1B_itvcc
,conv_id
,convEl
,convEr
,conv10
,conv0
,conv1
,conv_sym
,conv_flat
,leW_conv
,leW_factor
,factor_flat
,factorl
,ndconvE
,factorr
,factorK
,convK
,conv_inj
,factor_inj
,conv_bij
,factor_bij
,le_conv
,le_factor
,lt_conv
,lt_factor
,conv_itv_bij
,factor_itv_bij
,mem_conv_itv
,mem_conv_itvcc
,range_conv
,range_factor
,mem_factor_itv
,set_itv_ge
,trivIset_set_itv_nth
,disjoint_itvxx
,lt_disjoint
,disjoint_neitv
,neitv_bnd1
,neitv_bnd2
(moved toclassical/set_interval.v
)
- definitions
- in
topology.v
- lemmas
prod_topo_applyE
- lemmas
- in
mathcomp_extra.v
:- defintion
onem
and notation`1-
- lemmas
onem0
,onem1
,onemK
,onem_gt0
,onem_ge0
,onem_le1
,onem_lt1
,onemX_ge0
,onemX_lt1
,onemD
,onemMr
,onemM
- lemmas
natr1
,nat1r
- defintion
- in
classical_sets.v
:- lemmas
subset_fst_set
,subset_snd_set
,fst_set_fst
,snd_set_snd
,fset_setM
,snd_setM
,fst_setMR
- lemmas
xsection_snd_set
,ysection_fst_set
- lemmas
- in
constructive_ereal.v
:- lemmas
ltNye_eq
,sube_lt0
,subre_lt0
,suber_lt0
,sube_ge0
- lemmas
dsubre_gt0
,dsuber_gt0
,dsube_gt0
,dsube_le0
- lemmas
- in
signed.v
:- lemmas
onem_PosNum
,onemX_NngNum
- lemmas
- in
fsbigop.v
:- lemmas
lee_fsum_nneg_subset
,lee_fsum
- lemmas
- in
topology.v
:- lemma
near_inftyS
- lemma
continuous_closedP
,closedU
,pasting
- lemma
continuous_inP
- lemmas
open_setIS
,open_setSI
,closed_setIS
,closed_setSI
- lemma
- in
normedtype.v
:- definitions
contraction
andis_contraction
- lemma
contraction_fixpoint_unique
- definitions
- in
sequences.v
:- lemmas
contraction_dist
,contraction_cvg
,contraction_cvg_fixed
,banach_fixed_point
,contraction_unique
- lemmas
- in
derive.v
:- lemma
diff_derivable
- lemma
- in
measure.v
:- lemma
measurable_funTS
- lemma
- in
lebesgue_measure.v
:- lemma
measurable_fun_fine
- lemma
open_measurable_subspace
- lemma
subspace_continuous_measurable_fun
- corollary
open_continuous_measurable_fun
- Hint about
measurable_fun_normr
- lemma
- in
lebesgue_integral.v
:- lemma
measurable_fun_indic
- lemma
ge0_integral_mscale
- lemma
integral_pushforward
- lemma
- in
esum.v
:- definition
esum
- definition
- moved from
lebesgue_integral.v
toclassical_sets.v
:mem_set_pair1
->mem_xsection
mem_set_pair2
->mem_ysection
- in
derive.v
:- generalized
is_diff_scalel
- generalized
- in
measure.v
:- generalize
measurable_uncurry
- generalize
- in
lebesgue_measure.v
:pushforward
requires a proof that its argument is measurable
- in
lebesgue_integral.v
:- change implicits of
integralM_indic
- change implicits of
- in
constructive_ereal.v
:lte_pinfty_eq
->ltey_eq
le0R
->fine_ge0
lt0R
->fine_gt0
- in
ereal.v
:lee_pinfty_eq
->leye_eq
lee_ninfty_eq
->leeNy_eq
- in
esum.v
:esum0
->esum1
- in
sequences.v
:nneseries_lim_ge0
->nneseries_ge0
- in
measure.v
:ring_fsets
->ring_finite_set
discrete_measurable
->discrete_measurable_nat
cvg_mu_inc
->nondecreasing_cvg_mu
- in
lebesgue_integral.v
:muleindic_ge0
->nnfun_muleindic_ge0
mulem_ge0
->mulemu_ge0
nnfun_mulem_ge0
->nnsfun_mulemu_ge0
- in
esum.v
:- lemma
fsetsP
,sum_fset_set
- lemma
- in
mathcomp_extra.v
:- lemma
big_const_idem
- lemma
big_id_idem
- lemma
big_rem_AC
- lemma
bigD1_AC
- lemma
big_mkcond_idem
- lemma
big_split_idem
- lemma
big_id_idem_AC
- lemma
bigID_idem
- lemmas
bigmax_le
andbigmax_lt
- lemma
bigmin_idr
- lemma
bigmax_idr
- lemma
- in file
boolp.v
:- lemmas
iter_compl
,iter_compr
,iter0
- lemmas
- in file
functions.v
:- lemmas
oinv_iter
,some_iter_inv
,inv_iter
, - Instances for functions interfaces for
iter
(partial inverse up to bijective function)
- lemmas
- in
classical_sets.v
:- lemma
preimage10P
- lemma
setT_unit
- lemma
subset_refl
- lemma
- in
ereal.v
:- notations
_ < _ :> _
and_ <= _ :> _
- lemmas
lee01
,lte01
,lee0N1
,lte0N1
- lemmas
lee_pmul2l
,lee_pmul2r
,lte_pmul
,lee_wpmul2l
- lemmas
lee_lt_add
,lee_lt_dadd
,lee_paddl
,lee_pdaddl
,lte_paddl
,lte_pdaddl
,lee_paddr
,lee_pdaddr
,lte_paddr
,lte_pdaddr
- lemmas
muleCA
,muleAC
,muleACA
- notations
- in
reals.v
:- lemmas
Rfloor_lt_int
,floor_lt_int
,floor_ge_int
- lemmas
ceil_ge_int
,ceil_lt_int
- lemmas
- in
lebesgue_integral.v
:- lemma
ge0_emeasurable_fun_sum
- lemma
integrableMr
- lemma
- in
ereal.v
:- generalize
lee_pmul
- simplify
lte_le_add
,lte_le_dadd
,lte_le_sub
,lte_le_dsub
- generalize
- in
measure.v
:- generalize
pushforward
- generalize
- in
lebesgue_integral.v
- change
Arguments
ofeq_integrable
- fix pretty-printing of
{mfun _ >-> _}
,{sfun _ >-> _}
,{nnfun _ >-> _}
- minor generalization of
eq_measure_integral
- change
- from
topology.v
tomathcomp_extra.v
:- generalize
ltr_bigminr
toporderType
and rename tobigmin_lt
- generalize
bigminr_ler
toorderType
and rename tobigmin_le
- generalize
- moved out of module
Bigminr
innormedtype.v
tomathcomp_extra.v
and generalized toorderType
:- lemma
bigminr_ler_cond
, renamed tobigmin_le_cond
- lemma
- moved out of module
Bigminr
innormedtype.v
tomathcomp_extra.v
:- lemma
bigminr_maxr
- lemma
- moved from from module
Bigminr
innormedtype.v
- to
mathcomp_extra.v
and generalized toorderType
bigminr_mkcond
->bigmin_mkcond
bigminr_split
->bigmin_split
bigminr_idl
->bigmin_idl
bigminrID
->bigminID
bigminrD1
->bigminD1
bigminr_inf
->bigmin_inf
bigminr_gerP
->bigmin_geP
bigminr_gtrP
->bigmin_gtP
bigminr_eq_arg
->bigmin_eq_arg
eq_bigminr
->eq_bigmin
- to
topology.v
and generalized toorderType
bigminr_lerP
->bigmin_leP
bigminr_ltrP
->bigmin_ltP
- to
- moved from
topology.v
tomathcomp_extra.v
:bigmax_lerP
->bigmax_leP
bigmax_ltrP
->bigmax_ltP
ler_bigmax_cond
->le_bigmax_cond
ler_bigmax
->le_bigmax
le_bigmax
->homo_le_bigmax
- in
ereal.v
:lee_pinfty_eq
->leye_eq
lee_ninfty_eq
->leeNy_eq
- in
classical_sets.v
:set_bool
->setT_bool
- in
topology.v
:bigmax_gerP
->bigmax_geP
bigmax_gtrP
->bigmax_gtP
- in
lebesgue_integral.v
:emeasurable_funeM
->measurable_funeM
- in
topology.v
:bigmax_seq1
,bigmax_pred1_eq
,bigmax_pred1
- in
normedtype.v
(moduleBigminr
)bigminr_ler_cond
,bigminr_ler
.bigminr_seq1
,bigminr_pred1_eq
,bigminr_pred1
- file
ereal.v
split in two filesconstructive_ereal.v
andereal.v
(the latter exports the former, so the "Require Import ereal" can just be kept unchanged)
- in file
classical_sets.v
- lemma
set_bool
- lemma
supremum_out
- definition
isLub
- lemma
supremum1
- lemma
trivIset_set0
- lemmas
trivIset_image
,trivIset_comp
- notation
trivIsets
- lemma
- in file
topology.v
:- definition
near_covering
- lemma
compact_near_coveringP
- lemma
continuous_localP
,equicontinuous_subset_id
- lemmas
precompact_pointwise_precompact
,precompact_equicontinuous
,Ascoli
- definition
frechet_filter
, instancesfrechet_properfilter
, andfrechet_properfilter_nat
- definition
principal_filter
discrete_space
- lemma
principal_filterP
,principal_filter_proper
,principal_filter_ultra
- canonical
bool_discrete_filter
- lemma
compactU
- lemma
discrete_sing
,discrete_nbhs
,discrete_open
,discrete_set1
,discrete_closed
,discrete_cvg
,discrete_hausdorff
- canonical
bool_discrete_topology
- definition
discrete_topological_mixin
- lemma
discrete_bool
,bool_compact
- definition
- in
Rstruct.v
:- lemmas
Rsupremums_neq0
,Rsup_isLub
,Rsup_ub
- lemmas
- in
reals.v
:- lemma
floor_natz
- lemma
opp_set_eq0
,ubound0
,lboundT
- lemma
- in file
lebesgue_integral.v
:- lemma
integrable0
- mixins
isAdditiveMeasure
,isMeasure0
,isMeasure
,isOuterMeasure
- structures
AdditiveMeasure
,Measure
,OuterMeasure
- notations
additive_measure
,measure
,outer_measure
- definition
mrestr
- lemmas
integral_measure_sum_nnsfun
,integral_measure_add_nnsfun
- lemmas
ge0_integral_measure_sum
,integral_measure_add
,integral_measure_series_nnsfun
,ge0_integral_measure_series
- lemmas
integrable_neg_fin_num
,integrable_pos_fin_num
- lemma
integral_measure_series
- lemmas
counting_dirac
,summable_integral_dirac
,integral_count
- lemmas
integrable_abse
,integrable_summable
,integral_bigcup
- lemma
- in
measure.v
:- lemmas
additive_measure_snum_subproof
,measure_snum_subproof
- canonicals
additive_measure_snum
,measure_snum
- definition
mscale
- definition
restr
- definition
counting
, canonicalmeasure_counting
- definition
discrete_measurable
, instantiated as ameasurableType
- lemma
sigma_finite_counting
- lemma
msum_mzero
- lemmas
- in
lebesgue_measure.v
:- lemma
diracE
- notation
_.-ocitv
- definition
ocitv_display
- lemma
- in file
cardinality.v
:- lemmas
trivIset_sum_card
,fset_set_sub
,fset_set_set0
- lemmas
- in file
sequences.v
:- lemmas
nat_dvg_real
,nat_cvgPpinfty
,nat_nondecreasing_is_cvg
- definition
nseries
, lemmasle_nseries
,cvg_nseries_near
,dvg_nseries
- lemmas
- in file
ereal.v
:- lemma
fin_num_abs
- lemma
- in file
esum.v
:- definition
summable
- lemmas
summable_pinfty
,summableE
,summableD
,summableN
,summableB
,summable_funepos
,summable_funeneg
- lemmas
summable_fine_sum
,summable_cvg
,summable_nneseries_lim
,summable_nnseries
,summable_nneseries_esum
,esumB
- lemma
fsbig_esum
- definition
- in
trigo.v
:- lemmas
cos1_gt0
,pi_ge2
- lemmas
pihalf_ge1
,pihalf_lt2
- lemmas
- in
measure.v
:- inductive
measure_display
- notation
_.-sigma
,_.-sigma.-measurable
,_.-ring
,_.-ring.-measurable
,_.-cara
,_.-cara.-measurable
,_.-caratheodory
,_.-prod
._.-prod.-measurable
- notation
_.-measurable
- lemma
measure_semi_additive_ord
,measure_semi_additive_ord_I
- lemma
decomp_finite_set
- inductive
- in
functions.v
:- lemma
patch_pred
,trivIset_restr
- lemma
has_sup1
,has_inf1
moved fromreals.v
toclassical_sets.v
- in
topology.v
:- generalize
cluster_cvgE
,fam_cvgE
,ptws_cvg_compact_family
- rewrite
equicontinuous
andpointwise_precompact
to use index
- generalize
- in
Rstruct.v
:- statement of lemma
completeness'
, renamed toRcondcomplete
- statement of lemma
real_sup_adherent
- statement of lemma
- in
ereal.v
:- statements of lemmas
ub_ereal_sup_adherent
,lb_ereal_inf_adherent
- statements of lemmas
- in
reals.v
:- definition
sup
- statements of lemmas
sup_adherent
,inf_adherent
- definition
- in
sequences.v
:- generalize
eq_nneseries
,nneseries0
- generalize
- in
mathcomp_extra.v
:- generalize
card_fset_sum1
- generalize
- in
lebesgue_integral.v
:- change the notation
\int_
product_measure1
takes a proof that the second measure is sigma-finiteproduct_measure2
takes a proof that the first measure is sigma-finite- definitions
integral
andintegrable
now take a function instead of a measure - remove one space in notation
\d_
- generalize
nondecreasing_series
- constant
measurableType
now take an addititional parameter of typemeasure_display
- change the notation
- in
measure.v
:measure0
is now a lemma- statement of lemmas
content_fin_bigcup
,measure_fin_bigcup
,ring_fsets
,decomp_triv
,cover_decomp
,decomp_set0
,decompN0
,Rmu_fin_bigcup
- definitions
decomp
,measure
- several constants now take a parameter of type
measure_display
- in
trigo.v
:- lemma
cos_exists
- lemma
- in
set_interval.v
:- generalize to numDomainType:
mem_1B_itvcc
,conv
,conv_id
,convEl
,convEr
,conv10
,conv0
,conv1
,conv_sym
,conv_flat
,leW_conv
,factor
,leW_factor
,factor_flat
,factorl
,ndconv
,ndconvE
- generalize to numFieldType
factorr
,factorK
,convK
,conv_inj
,factor_inj
,conv_bij
,factor_bij
,le_conv
,le_factor
,lt_conv
,lt_factor
,conv_itv_bij
,factor_itv_bij
,mem_conv_itv
,mem_conv_itvcc
,range_conv
,range_factor
- generalize to realFieldType:
mem_factor_itv
- generalize to numDomainType:
- in
fsbig.v
:- generalize
exchange_fsum
- generalize
- lemma
preimage_cst
generalized and moved fromlebesgue_integral.v
tofunctions.v
- lemma
fset_set_image
moved frommeasure.v
tocardinality.v
- in
reals.v
:- type generalization of
has_supPn
- type generalization of
- in
lebesgue_integral.v
:integralK
->integralrM
- in
trigo.v
:cos_pihalf_uniq
->cos_02_uniq
- in
measure.v
:sigma_algebraD
->sigma_algebraCD
g_measurable
->salgebraType
g_measurable_eqType
->salgebraType_eqType
g_measurable_choiceType
->salgebraType_choiceType
g_measurable_ptType
->salgebraType_ptType
- in
lebesgue_measure.v
:itvs
->ocitv_type
measurable_fun_sum
->emeasurable_fun_sum
- in
classical_sets.v
:trivIset_restr
->trivIset_widen
supremums_set1
->supremums1
infimums_set1
->infimums1
- in
Rstruct.v
:- definition
real_sup
- lemma
real_sup_is_lub
,real_sup_ub
,real_sup_out
- definition
- in
reals.v
:- field
sup
frommixin_of
in moduleReal
- field
- in
measure.v
:- notations
[additive_measure _ -> _]
,[measure _ -> _]
,[outer_measure _ -> _ ]
, - lemma
measure_is_additive_measure
- definitions
caratheodory_measure_mixin
,caratheodory_measure
- coercions
measure_to_nadditive_measure
,measure_additive_measure
- canonicals
measure_additive_measure
,set_ring_measure
,outer_measure_of_measure
,Hahn_ext_measure
- lemma
Rmu0
- lemma
measure_restrE
- notations
- in
measure.v
:- definition
g_measurableType
- notation
mu.-measurable
- definition
- in
mathcomp_extra.v
:- lemma
card_fset_sum1
- lemma
- in
classical_sets.v
:- lemma
preimage_setT
- lemma
bigsetU_bigcup
- lemmas
setI_II
andsetU_II
- lemma
- in
topology.v
:- definition
powerset_filter_from
- globals
powerset_filter_from_filter
- lemmas
near_small_set
,small_set_sub
- lemmas
withinET
,closureEcvg
,entourage_sym
,fam_nbhs
- generalize
cluster_cvgE
,ptws_cvg_compact_family
- lemma
near_compact_covering
- rewrite
equicontinuous
andpointwise_precompact
to use index - lemmas
ptws_cvg_entourage
,equicontinuous_closure
,ptws_compact_cvg
ptws_compact_closed
,ascoli_forward
,compact_equicontinuous
- definition
- in
normedtype.v
:- definition
bigcup_ointsub
- lemmas
bigcup_ointsub0
,open_bigcup_ointsub
,is_interval_bigcup_ointsub
,bigcup_ointsub_sub
,open_bigcup_rat
- lemmas
mulrl_continuous
andmulrr_continuous
.
- definition
- in
ereal.v
:- definition
expe
with notation^+
- definition
enatmul
with notation*+
(scope%E
) - definition
ednatmul
with notation*+
(scope%dE
) - lemmas
fineM
,enatmul_pinfty
,enatmul_ninfty
,EFin_natmul
,mule2n
,expe2
,mule_natl
- lemmas
ednatmul_pinfty
,ednatmul_ninfty
,EFin_dnatmul
,dmule2n
,ednatmulE
,dmule_natl
- lemmas
sum_fin_num
,sum_fin_numP
- lemmas
oppeB
,doppeB
,fineB
,dfineB
- lemma
abse1
- lemma
ltninfty_adde_def
- definition
- in
esum.v
:- lemma
esum_set1
- lemma
nnseries_interchange
- lemma
- in
cardinality.v
:- lemma
fset_set_image
,card_fset_set
,geq_card_fset_set
,leq_card_fset_set
,infinite_set_fset
,infinite_set_fsetP
andfcard_eq
.
- lemma
- in
sequences.v
:- lemmas
nneseriesrM
,ereal_series_cond
,ereal_series
,nneseries_split
- lemmas
lee_nneseries
- lemmas
- in
numfun.v
:- lemma
restrict_lee
- lemma
- in
measure.v
:- definition
pushforward
and canonicalpushforward_measure
- definition
dirac
with notation\d_
and canonicaldirac_measure
- lemmas
finite_card_dirac
,infinite_card_dirac
- lemma
eq_measure
- definition
msum
and canonicalmeasure_sum'
- definition
mzero
and canonicalmeasure_zero'
- definition
measure_add
and lemmameasure_addE
- definition
mseries
and canonicalmeasure_series'
- definition
- in
set_interval.v
:- lemma
opp_itv_infty_bnd
- lemma
- in
lebesgue_integral.v
:- lemmas
integral_set0
,ge0_integral_bigsetU
,ge0_integral_bigcup
- lemmas
- in
lebesgue_measure.v
:- lemmas
is_interval_measurable
,open_measurable
,continuous_measurable_fun
- lemma
emeasurable_funN
- lemmas
itv_bnd_open_bigcup
,itv_bnd_infty_bigcup
,itv_infty_bnd_bigcup
,itv_open_bnd_bigcup
- lemma
lebesgue_measure_set1
- lemma
lebesgue_measure_itv
- lemma
lebesgue_measure_rat
- lemmas
- in
lebesgue_integral.v
:- lemmas
integralM_indic
,integralM_indic_nnsfun
,integral_dirac
- lemma
integral_measure_zero
- lemma
eq_measure_integral
- lemmas
- in
mathcomp_extra.v
:- generalize
card_fset_sum1
- generalize
- in
classical_sets.v
:- lemma
some_bigcup
generalized and renamed toimage_bigcup
- lemma
- in
esumv
:- remove one hypothesis in lemmas
reindex_esum
,esum_image
- remove one hypothesis in lemmas
- moved from
lebesgue_integral.v
tolebesgue_measure.v
and generalized- hint
measurable_set1
/emeasurable_set1
- hint
- in
sequences.v
:- generalize
eq_nneseries
,nneseries0
- generalize
- in
set_interval.v
:- generalize
opp_itvoo
toopp_itv_bnd_bnd
- generalize
- in
lebesgue_integral.v
:- change the notation
\int_
- change the notation
- in
ereal.v
:num_abs_le
->num_abse_le
num_abs_lt
->num_abse_lt
addooe
->addye
addeoo
->addey
mule_ninfty_pinfty
->mulNyy
mule_pinfty_ninfty
->mulyNy
mule_pinfty_pinfty
->mulyy
mule_ninfty_ninfty
->mulNyNy
lte_0_pinfty
->lt0y
lte_ninfty_0
->ltNy0
lee_0_pinfty
->le0y
lee_ninfty_0
->leNy0
lte_pinfty
->ltey
lte_ninfty
->ltNye
lee_pinfty
->leey
lee_ninfty
->leNye
mulrpinfty_real
->real_mulry
mulpinftyr_real
->real_mulyr
mulrninfty_real
->real_mulrNy
mulninftyr_real
->real_mulNyr
mulrpinfty
->mulry
mulpinftyr
->mulyr
mulrninfty
->mulrNy
mulninftyr
->mulNyr
gt0_mulpinfty
->gt0_mulye
lt0_mulpinfty
->lt0_mulye
gt0_mulninfty
->gt0_mulNye
lt0_mulninfty
->lt0_mulNye
maxe_pinftyl
->maxye
maxe_pinftyr
->maxey
maxe_ninftyl
->maxNye
maxe_ninftyr
->maxeNy
mine_ninftyl
->minNye
mine_ninftyr
->mineNy
mine_pinftyl
->minye
mine_pinftyr
->miney
mulrinfty_real
->real_mulr_infty
mulrinfty
->mulr_infty
- in
realfun.v
:exp_continuous
->exprn_continuous
- in
sequences.v
:ereal_pseriesD
->nneseriesD
ereal_pseries0
->nneseries0
ereal_pseries_pred0
->nneseries_pred0
eq_ereal_pseries
->eq_nneseries
ereal_pseries_sum_nat
->nneseries_sum_nat
ereal_pseries_sum
->nneseries_sum
ereal_pseries_mkcond
->nneseries_mkcond
ereal_nneg_series_lim_ge
->nneseries_lim_ge
is_cvg_ereal_nneg_series_cond
->is_cvg_nneseries_cond
is_cvg_ereal_nneg_series
->is_cvg_nneseries
ereal_nneg_series_lim_ge0
->nneseries_lim_ge0
adde_def_nneg_series
->adde_def_nneseries
- in
esum.v
:ereal_pseries_esum
->nneseries_esum
- in
numfun.v
:funenng
->funepos
funennp
->funeneg
funenng_ge0
->funepos_ge0
funennp_ge0
->funeneg_ge0
funenngN
->funeposN
funennpN
->funenegN
funenng_restrict
->funepos_restrict
funennp_restrict
->funeneg_restrict
ge0_funenngE
->ge0_funeposE
ge0_funennpE
->ge0_funenegE
le0_funenngE
->le0_funeposE
le0_funennpE
->le0_funenegE
gt0_funenngM
->gt0_funeposM
gt0_funennpM
->gt0_funenegM
lt0_funenngM
->lt0_funeposM
lt0_funennpM
->lt0_funenegM
funenngnnp
->funeposneg
add_def_funennpg
->add_def_funeposneg
funeD_Dnng
->funeD_Dpos
funeD_nngD
->funeD_posD
- in
lebesgue_measure.v
:emeasurable_fun_funenng
->emeasurable_fun_funepos
emeasurable_fun_funennp
->emeasurable_fun_funeneg
- in
lebesgue_integral.v
:integrable_funenng
->integrable_funepos
integrable_funennp
->integrable_funeneg
integral_funennp_lt_pinfty
->integral_funeneg_lt_pinfty
integral_funenng_lt_pinfty
->integral_funepos_lt_pinfty
ae_eq_funenng_funennp
->ae_eq_funeposneg
- in
mathcomp_extra.v
:- lemmas
natr_absz
,ge_pinfty
,le_ninfty
,gt_pinfty
,lt_ninfty
- lemmas
- in
classical_sets.v
:- notation
[set of _]
- notation
- in
topology.v
:- lemmas
inj_can_sym_in_on
,inj_can_sym_on
,inj_can_sym_in
- lemmas
- in
signed.v
:- notations
%:nngnum
and%:posnum
- notations
- in
ereal.v
:- notations
{posnum \bar R}
and{nonneg \bar R}
- notations
%:pos
and%:nng
inereal_dual_scope
andereal_scope
- variants
posnume_spec
andnonnege_spec
- definitions
posnume
,nonnege
,abse_reality_subdef
,ereal_sup_reality_subdef
,ereal_inf_reality_subdef
- lemmas
ereal_comparable
,pinfty_snum_subproof
,ninfty_snum_subproof
,EFin_snum_subproof
,fine_snum_subproof
,oppe_snum_subproof
,adde_snum_subproof
,dadde_snum_subproof
,mule_snum_subproof
,abse_reality_subdef
,abse_snum_subproof
,ereal_sup_snum_subproof
,ereal_inf_snum_subproof
,num_abse_eq0
,num_lee_maxr
,num_lee_maxl
,num_lee_minr
,num_lee_minl
,num_lte_maxr
,num_lte_maxl
,num_lte_minr
,num_lte_minl
,num_abs_le
,num_abs_lt
,posnumeP
,nonnegeP
- signed instances
pinfty_snum
,ninfty_snum
,EFin_snum
,fine_snum
,oppe_snum
,adde_snum
,dadde_snum
,mule_snum
,abse_snum
,ereal_sup_snum
,ereal_inf_snum
- notations
- in
functions.v
:addrfunE
renamed toaddrfctE
and generalized toType
,zmodType
opprfunE
renamed toopprfctE
and generalized toType
,zmodType
- moved from
functions.v
toclassical_sets.v
- lemma
subsetW
, definitionsubsetCW
- lemma
- in
mathcomp_extra.v
:- fix notation
ltLHS
- fix notation
- in
topology.v
:open_bigU
->bigcup_open
- in
functions.v
:mulrfunE
->mulrfctE
scalrfunE
->scalrfctE
exprfunE
->exprfctE
valLr
->valR
valLr_fun
->valR_fun
valLrK
->valRK
oinv_valLr
->oinv_valR
valLr_inj_subproof
->valR_inj_subproof
valLr_surj_subproof
->valR_surj_subproof
- in
measure.v
:measurable_bigcup
->bigcupT_measurable
measurable_bigcap
->bigcapT_measurable
measurable_bigcup_rat
->bigcupT_measurable_rat
- in
lebesgue_measure.v
:emeasurable_bigcup
->bigcupT_emeasurable
- files
posnum.v
andnngnum.v
(both subsumed bysigned.v
) - in
topology.v
:ltr_distlC
,ler_distlC
- in
mathcomp_extra.v
:- lemma
all_sig2_cond
- definition
olift
- lemmas
obindEapp
,omapEbind
,omapEapp
,oappEmap
,omap_comp
,oapp_comp
,oapp_comp_f
,olift_comp
,compA
,can_in_pcan
,pcan_in_inj
,can_in_comp
,pcan_in_comp
,ocan_comp
,pred_omap
,ocan_in_comp
,eqbLR
,eqbRL
- definition
opp_fun
, notation\-
- definition
mul_fun
, notation\*
- definition
max_fun
, notation\max
- lemmas
gtr_opp
,le_le_trans
- notations
eqLHS
,eqRHS
,leLHS
,leRHS
,ltLHS
,lrRHS
- inductive
boxed
- lemmas
eq_big_supp
,perm_big_supp_cond
,perm_big_supp
- lemmma
mulr_ge0_gt0
- lemmas
lt_le
,gt_ge
- coercion
pair_of_interval
- lemmas
ltBSide
,leBSide
- multirule
lteBSide
- lemmas
ltBRight_leBLeft
,leBRight_ltBLeft
- multirule
bnd_simp
- lemmas
itv_splitU1
,itv_split1U
- definition
miditv
- lemmas
mem_miditv
,miditv_bnd2
,miditv_bnd1
- lemmas
predC_itvl
,predC_itvr
,predC_itv
- lemma
- in
boolp.v
:- lemmas
cid2
,propeqP
,funeqP
,funeq2P
,funeq3P
,predeq2P
,predeq3P
- hint
Prop_irrelevance
- lemmas
pselectT
,eq_opE
- definition
classicType
, canonicalsclassicType_eqType
,classicType_choiceType
, notation{classic ...}
- definition
eclassicType
, canonicalseclassicType_eqType
,eclassicType_choiceType
, notation{eclassic ...}
- definition
canonical_of
, notationscanonical_
,canonical
, lemmacanon
- lemmas
Peq
,Pchoice
,eqPchoice
- lemmas
contra_notT
,contraPT
,contraTP
,contraNP
,contraNP
,contra_neqP
,contra_eqP
- lemmas
forallPNP
,existsPNP
- module
FunOrder
, lemmalefP
- lemmas
meetfE
andjoinfE
- lemmas
- in
classical_sets.v
:- notations
[set: ...]
,*`
,`*
- definitions
setMR
andsetML
,disj_set
- coercion
set_type
, definitionSigSub
- lemmas
set0fun
,set_mem
,mem_setT
,mem_setK
,set_memK
,memNset
,setTPn
,in_set0
,in_setT
,in_setC
,in_setI
,in_setD
,in_setU
,in_setM
,set_valP
,set_true
,set_false
,set_andb
,set_orb
,fun_true
,fun_false
,set_mem_set
,mem_setE
,setDUK
,setDUK
,setDKU
,setUv
,setIv
,setvU
,setvI
,setUCK
,setUKC
,setICK
,setIKC
,setDIK
,setDKI
,setI1
,set1I
,subsetT
,disj_set2E
,disj_set2P
,disj_setPS
,disj_set_sym
,disj_setPCl
,disj_setPCr
,disj_setPLR
,disj_setPRL
,setF_eq0
,subsetCl
,subsetCr
,subsetC2
,subsetCP
,subsetCPl
,subsetCPr
,subsetUl
,subsetUr
,setDidl
,subIsetl
,subIsetr
,subDsetl
,subDsetr
setUKD
,setUDK
,setUIDK
,bigcupM1l
,bigcupM1r
,pred_omapE
,pred_omap_set
- hints
subsetUl
,subsetUr
,subIsetl
,subIsetr
,subDsetl
,subDsetr
- lemmas
image2E
- lemmas
Iiota
,ordII
,IIord
,ordIIK
,IIordK
- lemmas
set_imfset
,imageT
- hints
imageP
,imageT
- lemmas
homo_setP
,image_subP
,image_sub
,subset_set2
- lemmas
eq_preimage
,comp_preimage
,preimage_id
,preimage_comp
,preimage_setI_eq0
,preimage0eq
,preimage0
,preimage10
, - lemmas
some_set0
,some_set1
,some_setC
,some_setR
,some_setI
,some_setU
,some_setD
,sub_image_some
,sub_image_someP
,image_some_inj
,some_set_eq0
,some_preimage
,some_image
,disj_set_some
- lemmas
some_bigcup
,some_bigcap
,bigcup_set_type
,bigcup_mkcond
,bigcup_mkcondr
,bigcup_mkcondl
,bigcap_mkcondr
,bigcap_mkcondl
,bigcupDr
,setD_bigcupl
,bigcup_bigcup_dep
,bigcup_bigcup
,bigcupID
.bigcapID
- lemmas
bigcup2inE
,bigcap2
,bigcap2E
,bigcap2inE
- lemmas
bigcup_sub
,sub_bigcap
,subset_bigcup
,subset_bigcap
,bigcap_set_type
,bigcup_pred
- lemmas
bigsetU_bigcup2
,bigsetI_bigcap2
- lemmas
in1TT
,in2TT
,in3TT
,inTT_bij
- canonical
option_pointedType
- notations
[get x | E]
,[get x : T | E]
- variant
squashed
, notation$| ... |
, tactic notationsquash
- definition
unsquash
, lemmaunsquashK
- module
Empty
that declares the typeemptyType
with the expected[emptyType of ...]
notations - canonicals
False_emptyType
andvoid_emptyType
- definitions
no
andany
- lemmas
empty_eq0
- definition
quasi_canonical_of
, notationsquasi_canonical_
,quasi_canonical
, lemmaqcanon
- lemmas
choicePpointed
,eqPpointed
,Ppointed
- lemmas
trivIset_setIl
,trivIset_setIr
,sub_trivIset
,trivIset_bigcup2
- definition
smallest
- lemmas
sub_smallest
,smallest_sub
,smallest_id
- lemma and hint
sub_gen_smallest
- lemmas
sub_smallest2r
,sub_smallest2l
- lemmas
preimage_itv
,preimage_itv_o_infty
,preimage_itv_c_infty
,preimage_itv_infty_o
,preimage_itv_infty_c
,notin_setI_preimage
- definitions
xsection
,ysection
- lemmas
xsection0
,ysection0
,in_xsectionM
,in_ysectionM
,notin_xsectionM
,notin_ysectionM
,xsection_bigcup
,ysection_bigcup
,trivIset_xsection
,trivIset_ysection
,le_xsection
,le_ysection
,xsectionD
,ysectionD
- notations
- in
topology.v
:- lemma
filter_pair_set
- definition
prod_topo_apply
- lemmas
prod_topo_applyE
,prod_topo_apply_continuous
,hausdorff_product
- lemmas
closedC
,openC
- lemmas
continuous_subspace_in
- lemmas
closed_subspaceP
,closed_subspaceW
,closure_subspaceW
- lemmas
nbhs_subspace_subset
,continuous_subspaceW
,nbhs_subspaceT
,continuous_subspaceT_for
,continuous_subspaceT
,continuous_open_subspace
- globals
subspace_filter
,subspace_proper_filter
- notation
{within ..., continuous ...}
- definitions
compact_near
,precompact
,locally_compact
- lemmas
precompactE
,precompact_subset
,compact_precompact
,precompact_closed
- definitions
singletons
,equicontinuous
,pointwise_precompact
- lemmas
equicontinuous_subset
,equicontinuous_cts
- lemmas
pointwise_precomact_subset
,pointwise_precompact_precompact
uniform_pointwise_compact
,compact_pointwise_precompact
- lemmas
compact_set1
,uniform_set1
,ptws_cvg_family_singleton
,ptws_cvg_compact_family
- lemmas
connected1
,connectedU
- lemmas
connected_component_sub
,connected_component_id
,connected_component_out
,connected_component_max
,connected_component_refl
,connected_component_cover
,connected_component_cover
,connected_component_trans
,same_connected_component
- lemma
continuous_is_cvg
- lemmas
uniform_limit_continuous
,uniform_limit_continuous_subspace
- lemma
- in
normedtype.v
- generalize
IVT
with subspace topology - lemmas
abse_continuous
,cvg_abse
,is_cvg_abse
,EFin_lim
,near_infty_natSinv_expn_lt
- generalize
- in
reals.v
:- lemmas
sup_gt
,inf_lt
,ltr_add_invr
- lemmas
- in
ereal.v
:- lemmas
esum_ninftyP
,esum_pinftyP
- lemmas
addeoo
,daddeoo
- lemmas
desum_pinftyP
,desum_ninftyP
- lemmas
lee_pemull
,lee_nemul
,lee_pemulr
,lee_nemulr
- lemma
fin_numM
- definition
mule_def
, notationx *? y
- lemma
mule_defC
- notations
\*
inereal_scope
, andereal_dual_scope
- lemmas
mule_def_fin
,mule_def_neq0_infty
,mule_def_infty_neq0
,neq0_mule_def
- notation
\-
inereal_scope
andereal_dual_scope
- lemma
fin_numB
- lemmas
mule_eq_pinfty
,mule_eq_ninfty
- lemmas
fine_eq0
,abse_eq0
- lemmas
EFin_inj
,EFin_bigcup
,EFin_setC
,adde_gt0
,mule_ge0_gt0
,lte_mul_pinfty
,lt0R
,adde_defEninfty
,lte_pinfty_eq
,ge0_fin_numE
,eq_pinftyP
, - canonical
mule_monoid
- lemmas
preimage_abse_pinfty
,preimage_abse_ninfty
- notation
\-
- lemmas
fin_numEn
,fin_numPn
,oppe_eq0
,ltpinfty_adde_def
,gte_opp
,gte_dopp
,gt0_mulpinfty
,lt0_mulpinfty
,gt0_mulninfty
,lt0_mulninfty
,eq_infty
,eq_ninfty
,hasNub_ereal_sup
,ereal_sup_EFin
,ereal_inf_EFin
,restrict_abse
- canonical
ereal_pointed
- lemma
seq_psume_eq0
- lemmas
lte_subl_addl
,lte_subr_addl
,lte_subel_addr
,lte_suber_addr
,lte_suber_addl
,lee_subl_addl
,lee_subr_addl
,lee_subel_addr
,lee_subel_addl
,lee_suber_addr
,lee_suber_addl
- lemmas
lte_dsubl_addl
,lte_dsubr_addl
,lte_dsubel_addr
,lte_dsuber_addr
,lte_dsuber_addl
,lee_dsubl_addl
,lee_dsubr_addl
,lee_dsubel_addr
,lee_dsubel_addl
,lee_dsuber_addr
,lee_dsuber_addl
- lemmas
realDe
,realDed
,realMe
,nadde_eq0
,padde_eq0
,adde_ss_eq0
,ndadde_eq0
,pdadde_eq0
,dadde_ss_eq0
,mulrpinfty_real
,mulpinftyr_real
,mulrninfty_real
,mulninftyr_real
,mulrinfty_real
- lemmas
- in
sequences.v
:- lemmas
ereal_cvgM_gt0_pinfty
,ereal_cvgM_lt0_pinfty
,ereal_cvgM_gt0_ninfty
,ereal_cvgM_lt0_ninfty
,ereal_cvgM
- definition
eseries
with notation[eseries E]_n
- lemmas
eseriesEnat
,eseriesEord
,eseriesSr
,eseriesS
,eseriesSB
,eseries_addn
,sub_eseries_geq
,sub_eseries
,sub_double_eseries
,eseriesD
- lemmas
- definition
etelescope
- lemmas
ereal_cvgB
,nondecreasing_seqD
,lef_at
- lemmas
lim_mkord
,ereal_pseries_mkcond
,ereal_pseries_sum
- definition
sdrop
- lemmas
has_lbound_sdrop
,has_ubound_sdrop
- definitions
sups
,infs
- lemmas
supsN
,infsN
,nonincreasing_sups
,nondecreasing_infs
,is_cvg_sups
,is_cvg_infs
,infs_le_sups
,cvg_sups_inf
,cvg_infs_sup
,sups_preimage
,infs_preimage
,bounded_fun_has_lbound_sups
,bounded_fun_has_ubound_infs
- definitions
lim_sup
,lim_inf
- lemmas
lim_infN
,lim_supE
,lim_infE
,lim_inf_le_lim_sup
,cvg_lim_inf_sup
,cvg_lim_infE
,cvg_lim_supE
,cvg_sups
,cvg_infs
,le_lim_supD
,le_lim_infD
,lim_supD
,lim_infD
- definitions
esups
,einfs
- lemmas
esupsN
,einfsN
,nonincreasing_esups
,nondecreasing_einfs
,einfs_le_esups
,cvg_esups_inf
,is_cvg_esups
,cvg_einfs_sup
,is_cvg_einfs
,esups_preimage
,einfs_preimage
- definitions
elim_sup
,elim_inf
- lemmas
elim_infN
,elim_supN
,elim_inf_sup
,elim_inf_sup
,cvg_ninfty_elim_inf_sup
,cvg_ninfty_einfs
,cvg_ninfty_esups
,cvg_pinfty_einfs
,cvg_pinfty_esups
,cvg_esups
,cvg_einfs
,cvg_elim_inf_sup
,is_cvg_elim_infE
,is_cvg_elim_supE
- lemmas
elim_inf_shift
,elim_sup_le_cvg
- lemmas
- in
derive.v
- lemma
MVT_segment
- lemma
derive1_cst
- lemma
- in
realfun.v
:- lemma
continuous_subspace_itv
- lemma
- in
esum.v
(wascsum.v
):- lemmas
sum_fset_set
,esum_ge
,esum0
,le_esum
,eq_esum
,esumD
,esum_mkcond
,esum_mkcondr
,esum_mkcondl
,esumID
,esum_sum
,esum_esum
,lee_sum_fset_nat
,lee_sum_fset_lim
,ereal_pseries_esum
,reindex_esum
,esum_pred_image
,esum_set_image
,esum_bigcupT
- lemmas
- in
cardinality.v
:- notations
#>=
,#=
,#!=
- scope
card_scope
, delimitercard
- notation
infinite_set
- lemmas
injPex
,surjPex
,bijPex
,surjfunPex
,injfunPex
- lemmas
inj_card_le
,pcard_leP
,pcard_leTP
,pcard_injP
,ppcard_leP
- lemmas
pcard_eq
,pcard_eqP
,card_bijP
,card_eqVP
,card_set_bijP
- lemmas
ppcard_eqP
,card_eqxx
,inj_card_eq
,card_some
,card_image
,card_imsub
- hint
card_eq00
- lemmas
empty_eq0
,card_le_emptyl
,card_le_emptyr
- multi-rule
emptyE_subdef
- lemmas
card_eq_le
,card_eqPle
,card_leT
,card_image_le
- lemmas
card_le_eql
,card_le_eqr
,card_eql
,card_eqr
,card_ge_image
,card_le_image
,card_le_image2
,card_eq_image
,card_eq_imager
,card_eq_image2
- lemmas
card_ge_some
,card_le_some
,card_le_some2
,card_eq_somel
,card_eq_somer
,card_eq_some2
- lemmas
card_eq_emptyr
,card_eq_emptyl
,emptyE
- lemma and hint
card_setT
- lemma and hint
card_setT_sym
- lemmas
surj_card_ge
,pcard_surjP
,pcard_geP
,ocard_geP
,pfcard_geP
- lemmas
ocard_eqP
,oocard_eqP
,sub_setP
,card_subP
- lemmas
eq_countable
,countable_set_countMixin
,countableP
,sub_countable
- lemmas
card_II
,finite_fsetP
,finite_subfsetP
,finite_seqP
,finite_fset
,finite_finpred
,finite_finset
,infiniteP
,finite_setPn
- lemmas
card_le_finite
,finite_set_leP
,card_ge_preimage
,eq_finite_set
,finite_image
- lemma and hint
finite_set1
- lemmas
finite_setU
,finite_set2
,finite_set3
,finite_set4
,finite_set5
,finite_set6
,finite_set7
,finite_setI
,finite_setIl
,finite_setIr
,finite_setM
,finite_image2
,finite_image11
- definition
fset_set
- lemmas
fset_setK
,in_fset_set
,fset_set0
,fset_set1
,fset_setU
,fset_setI
,fset_setU1
,fset_setD
,fset_setD1
,fset_setM
- definitions
fst_fset
,snd_fset
, notations.`1
,.`2
- lemmas
finite_set_fst
,finite_set_snd
,bigcup_finite
,finite_setMR
,finite_setML
,fset_set_II
,set_fsetK
,fset_set_inj
,bigsetU_fset_set
,bigcup_fset_set
,bigsetU_fset_set_cond
,bigcup_fset_set_cond
,bigsetI_fset_set
,bigcap_fset_set
,super_bij
,card_eq_fsetP
,card_IID
,finite_set_bij
- lemmas
countable1
,countable_fset
- lemma and hint
countable_finpred
- lemmas
eq_card_nat
- canonical
rat_pointedType
- lemmas
infinite_rat
,card_rat
,choicePcountable
,eqPcountable
,Pcountable
,bigcup_countable
,countableMR
,countableM
,countableML
,infiniteMRl
,cardMR_eq_nat
- mixin
FiniteImage
, structureFImFun
, notations{fumfun ... >-> ...}
,[fimfun of ...]
, hintfimfunP
- lemma and hint
fimfun_inP
- definitions
fimfun
,fimfun_key
, canonicalfimfun_keyed
- definitions
fimfun_Sub_subproof
,fimfun_Sub
- lemmas
fimfun_rect
,fimfun_valP
,fimfuneqP
- definitions and canonicals
fimfuneqMixin
,fimfunchoiceMixin
- lemma
finite_image_cst
,cst_fimfun_subproof
,fimfun_cst
- definition
cst_fimfun
- lemma
comp_fimfun_subproof
- lemmas
fimfun_zmod_closed
,fimfunD
,fimfunN
,fimfunB
,fimfun0
,fimfun_sum
- canonicals
fimfun_add
,fimfun_zmod
,fimfun_zmodType
- definition
fimfun_zmodMixin
- notations
- in
measure.v
:- definitions
setC_closed
,setI_closed
,setU_closed
,setD_closed
,setDI_closed
,fin_bigcap_closed
,finN0_bigcap_closed
,fin_bigcup_closed
,semi_setD_closed
,ndseq_closed
,trivIset_closed
,fin_trivIset_closed
,set_ring
,sigma_algebra
,dynkin
,monotone_classes
- notations
<<m D, G >>
,<<m G >>
,<<s D, G>>
,<<s G>>
,<<d G>>
,<<r G>>
,<<fu G>>
- lemmas
fin_bigcup_closedP
,finN0_bigcap_closedP
,sedDI_closedP
,sigma_algebra_bigcap
,sigma_algebraP
- lemma and hint
smallest_sigma_algebra
- lemmas
sub_sigma_algebra2
,sigma_algebra_id
,sub_sigma_algebra
,sigma_algebra0
,sigma_algebraD
,sigma_algebra_bigcup
- lemma and hint
smallest_setring
, lemma and hintsetring0
- lemmas
sub_setring2
,setring_id
,sub_setring
,setringDI
,setringU
,setring_fin_bigcup
,monotone_class_g_salgebra
- lemmas
smallest_monotone_classE
,monotone_class_subset
,dynkinT
,dynkinC
,dynkinU
,dynkin_monotone
,dynkin_g_dynkin
,sigma_algebra_dynkin
,dynkin_setI_bigsetI
,dynkin_setI_sigma_algebra
,setI_closed_gdynkin_salgebra
- factories
isRingOfSets
,isAlgebraOfSets
- lemmas
fin_bigcup_measurable
,fin_bigcap_measurable
,sigma_algebra_measurable
,sigma_algebraC
- definition
measure_restr
, lemmameasure_restrE
- definition
g_measurableType
- lemmas
measurable_g_measurableTypeE
- lemmas
measurable_fun_id
,measurable_fun_comp
,eq_measurable_fun
,measurable_fun_cst
,measurable_funU
,measurable_funS
,measurable_fun_ext
,measurable_restrict
- definitions
preimage_class
andimage_class
- lemmas
preimage_class_measurable_fun
,sigma_algebra_preimage_class
,sigma_algebra_image_class
,sigma_algebra_preimage_classE
,measurability
- definition
sub_additive
- lemma
semi_additiveW
- lemmas
content_fin_bigcup
,measure_fin_bigcup
,measure_bigsetU_ord_cond
,measure_bigsetU_ord
, - coercion
measure_to_nadditive_measure
- lemmas
measure_semi_bigcup
,measure_bigcup
- hint
measure_ge0
- lemma
big_trivIset
- defintion
covered_by
- module
SetRing
- lemmas
ring_measurableE
,ring_fsets
- definition
decomp
- lemmas
decomp_triv
,decomp_triv
,decomp_neq0
,decomp_neq0
,decomp_measurable
,cover_decomp
,decomp_sub
,decomp_set0
,decomp_set0
- definition
measure
- lemma
Rmu_fin_bigcup
,RmuE
,Rmu0
,Rmu_ge0
,Rmu_additive
,Rmu_additive_measure
- canonical
measure_additive_measure
- lemmas
- lemmas
covered_byP
,covered_by_finite
,covered_by_countable
,measure_le0
,content_sub_additive
,content_sub_fsum
,content_ring_sup_sigma_additive
,content_ring_sigma_additive
,ring_sigma_sub_additive
,ring_sigma_additive
,measure_sigma_sub_additive
,measureIl
,measureIr
,subset_measure0
,measureUfinr
,measureUfinl
,eq_measureU
,null_set_setU
- lemmas
g_salgebra_measure_unique_trace
,g_salgebra_measure_unique_cover
,g_salgebra_measure_unique
,measure_unique
,measurable_mu_extE
,Rmu_ext
,measurable_Rmu_extE
,sub_caratheodory
- definition
Hahn_ext
, canonicalHahn_ext_measure
, lemmaHahn_ext_sigma_finite
,Hahn_ext_unique
,caratheodory_measurable_mu_ext
- definitions
preimage_classes
,prod_measurable
,prod_measurableType
- lemmas
preimage_classes_comp
,measurableM
,measurable_prod_measurableType
,measurable_prod_g_measurableTypeR
,measurable_prod_g_measurableType
,prod_measurable_funP
,measurable_fun_prod1
,measurable_fun_prod2
- definitions
- in
functions.v
:- definitions
set_fun
,set_inj
- mixin
isFun
, structureFun
, notations{fun ... >-> ...}
,[fun of ...]
- field
funS
declared as a hint
- field
- mixin
OInv
, structureOInversible
, notations{oinv ... >-> ...}
,[oinv of ...]
,'oinv_ ...
- structure
OInvFun
, notations{oinvfun ... >-> ...}
,[oinvfun of ...]
- mixin
OInv_Inv
, factoryInv
, structureInversible
, notations{inv ... >-> ...}
,[inv of ...]
, notation^-1
- structure
InvFun
, notations{invfun ... >-> ...}
,[invfun of ...]
- mixin
OInv_CanV
with fieldoinvK
declared as a hint, factoryOCanV
- structure
Surject
, notations{surj ... >-> ...}
,[surj of ...]
- structure
SurjFun
, notations{surjfun ... >-> ...}
,[surjfun of ...]
- structure
SplitSurj
, notations{splitsurj ... >-> ...}
,[splitsurj of ...]
- structure
SplitSurjFun
, notations{splitsurjfun ... >-> ...}
,[splitsurjfun of ...]
- mixin
OInv_Can
with fieldfunoK
declared as a hint, structureInject
, notations{inj ... >-> ...}
,[inj of ...]
- structure
InjFun
, notations{injfun ... >-> ...}
,[injfun of ...]
- structure
SplitInj
, notations{splitinj ... >-> ...}
,[splitinj of ...]
- structure
SplitInjFun
, notations{splitinjfun ... >-> ...}
,[splitinjfun of ...]
- structure
Bij
, notations{bij ... >-> ...}
,[bij of ...]
- structure
SplitBij
, notations{splitbij ... >-> ...}
,[splitbij of ...]
- module
ShortFunSyntax
for shorter notations - notation
'funS_ ...
- definition and hint
fun_image_sub
- definition and hint
mem_fun
- notation
'mem_fun_ ...
- lemma
some_inv
- notation
'oinvS_ ...
- variant
oinv_spec
, lemma and hintoinvP
- notation
'oinvP_ ...
- lemma and hint
oinvT
, notation'oinvT_ ...
- lemma and hint
invK
, notation'invK_ ...
- lemma and hint
invS
, notation'invS_ ...
- notation
'funoK_ ...
- definition
inj
and notation'inj_ ...
- definition and hint
inj_hint
- lemma and hint
funK
, notation'funK_ ...
- lemma
funP
- factories
Inv_Can
,Inv_CanV
- lemmas
oinvV
,surjoinv_inj_subproof
,injoinv_surj_subproof
,invV
,oinv_some
,some_canV_subproof
,some_fun_subproof
,inv_oapp
,oinv_oapp
,inv_oappV
,oapp_can_subproof
,oapp_surj_subproof
,oapp_fun_subproof
,inv_obind
,oinv_obind
,inv_obindV
,oinv_comp
,some_comp_inv
,inv_comp
,comp_can_subproof
,comp_surj_subproof
, - notation
'totalfun_ ...
- lemmas
oinv_olift
,inv_omap
,oinv_omap
,omapV
- factories
canV
,OInv_Can2
,OCan2
,Can
,Inv_Can2
,Can2
,SplitInjFun_CanV
,BijTT
- lemmas
surjective_oinvK
,surjective_oinvS
, coercionsurjective_ocanV
- definition and coercion
surjection_of_surj
, lemmaPsurj
, coercionsurjection_of_surj
- lemma
oinv_surj
, lemma and hintsurj
, notation'surj_
- definition
funin
, lemmaset_fun_image
, notation[fun ... in ...]
- definition
split_
, lemmassplitV
,splitis_inj_subproof
,splitid
,splitsurj_subproof
, notation'split_
,split
- factories
Inj
,SurjFun_Inj
,SplitSurjFun_Inj
- lemmas
Pinj
,Pfun
,injPfun
,funPinj
,funPsurj
,surjPfun
,Psplitinj
,funPsplitinj
,PsplitinjT
,funPsplitsurj
,PsplitsurjT
- definition
unbind
- lemmas
unbind_fun_subproof
,oinv_unbind
,inv_unbind_subproof
,inv_unbind
,unbind_inj_subproof
,unbind_surj_subproof
,odflt_unbind
,oinv_val
,val_bij_subproof
,inv_insubd
- definition
to_setT
, lemmainv_to_setT
- definition
subfun
, lemmasubfun_inj
- lemma
subsetW
, definitionsubsetCW
- lemmas
subfun_imageT
,subfun_inv_subproof
- definition
seteqfun
, lemmaseteqfun_can2_subproof
- definitions
incl
,eqincl
, lemmaeqincl_surj
, notationinclT
- definitions
mkfun
,mkfun_fun
- definition
set_val
, lemmasoinv_set_val
,set_valE
- definition
ssquash
- lemma
set0fun_inj
- definitions
finset_val
,val_finset
- lemmas
finset_valK
,val_finsetK
- definition
glue
,glue1
,glue2
, lemmasglue_fun_subproof
,oinv_glue
,some_inv_glue_subproof
,inv_glue
,glueo_can_subproof
,glue_canv_subproof
- lemmas
inv_addr
,addr_can2_subproof
- lemmas
empty_can_subproof
,empty_fun_subproof
,empty_canv_subproof
- lemmas
subl_surj
,subr_surj
,surj_epi
,epiP
,image_eq
,oinv_image_sub
,oinv_Iimage_sub
,oinv_sub_image
,inv_image_sub
,inv_Iimage_sub
,inv_sub_image
,reindex_bigcup
,reindex_bigcap
,bigcap_bigcup
,trivIset_inj
,set_bij_homo
- definition and hint
fun_set_bij
- coercion
set_bij_bijfun
- definition and coercion
bij_of_set_bijection
- lemma and hint
bij
, notation'bij_
- definition
bijection_of_bijective
, lemmasPbijTT
,setTT_bijective
, lemma and hintbijTT
, notation'bijTT_
- lemmas
patchT
,patchN
,patchC
,patch_inj_subproof
,preimage_restrict
,comp_patch
,patch_setI
,patch_set0
,patch_setT
,restrict_comp
- definitions
sigL
,sigLfun
,valL_
,valLfun_
- lemmas
sigL_isfun
,valL_isfun
,sigLE
,eq_sigLP
,eq_sigLfunP
,sigLK
,valLK
,valLfunK
,sigL_valL
,sigL_valLfun\
,sigL_restrict
,image_sigL
,eq_restrictP
- notations
'valL_ ...
,'valLfun_ ...
,valL
- definitions
sigR
,valLr
,valLr_fun
- lemmas
sigRK
,sigR_funK
,valLrP
,valLrK
- lemmas
oinv_sigL
,sigL_inj_subproof
,sigL_surj_subproof
,oinv_sigR
,sigR_inj_subproof
,sigR_surj_subproof
,sigR_some_inv
,inv_sigR
,sigL_some_inv
,inv_sigL
,oinv_valL
,oapp_comp_x
,valL_inj_subproof
,valL_surj_subproof
,valL_some_inv
,inv_valL
,sigL_injP
,sigL_surjP
,sigL_funP
,sigL_bijP
,valL_injP
,valL_surjP
,valLfunP
,valL_bijP
- lemmas
oinv_valLr
,valLr_inj_subproof
,valLr_surj_subproof
- definitions
sigLR
,valLR
,valLRfun
, lemmasvalLRE
,valLRfunE
,sigL2K
,valLRK
,valLRfun_inj
,sigLR_injP
,valLR_injP
,sigLR_surjP
,valLR_surjP
,sigLR_bijP
,sigLRfun_bijP
,valLR_bijP
,subsetP
- new lemmas
eq_set_bijLR
,eq_set_bij
,bij_omap
,bij_olift
,bij_sub_sym
,splitbij_sub_sym
,set_bij00
,bij_subl
,bij_sub
,splitbij_sub
,can2_bij
,bij_sub_setUrl
,bij_sub_setUrr
,bij_sub_setUrr
,bij_sub_setUlr
- definition
pinv_
, lemmasinjpinv_surj
,injpinv_image
,injpinv_bij
,surjpK
,surjpinv_image_sub
,surjpinv_inj
,surjpinv_bij
,bijpinv_bij
,pPbij_
,pPinj_
,injpPfun_
,funpPinj_
- definitions
- in
fsbigop.v
:- notations
\big[op/idx]_(i \in A) f i
,\sum_(i \in A) f i
- lemma
finite_index_key
- definition
finite_support
- lemmas
in_finite_support
,no_finite_support
,eq_finite_support
- variant
finite_support_spec
- lemmas
finite_supportP
,eq_fsbigl
,eq_fsbigr
,fsbigTE
,fsbig_mkcond
,fsbig_mkcondr
,fsbig_mkcondl
,bigfs
,fsbigE
,fsbig_seq
,fsbig1
,fsbig_dflt
,fsbig_widen
,fsbig_supp
,fsbig_fwiden
,fsbig_set0
,fsbig_set1
,full_fsbigID
,fsbigID
,fsbigU
,fsbigU0
,fsbigD1
,full_fsbig_distrr
,fsbig_distrr
,mulr_fsumr
,mulr_fsuml
,fsbig_ord
,fsbig_finite
,reindex_fsbig
,fsbig_image
,reindex_inside
,reindex_fsbigT
, notationreindex_inside_setT
- lemmas
ge0_mule_fsumr
,ge0_mule_fsuml
,fsbigN1
,fsume_ge0
,fsume_le0
,fsume_gt0
,fsume_lt0
,pfsume_eq0
,fsbig_setU
,pair_fsum
,exchange_fsum
,fsbig_split
- notations
- in
set_interval.v
:- definition
neitv
- lemmas
neitv_lt_bnd
,set_itvP
,subset_itvP
,set_itvoo
,set_itvco
,set_itvcc
,set_itvoc
,set_itv1
,set_itvoo0
,set_itvoc0
,set_itvco0
,set_itv_infty_infty
,set_itv_o_infty
,set_itv_c_infty
,set_itv_infty_o
,set_itv_infty_c
,set_itv_pinfty_bnd
,set_itv_bnd_ninfty
- multirules
set_itv_infty_set0
,set_itvE
- lemmas
setUitv1
,setU1itv
- lemmas
neitvE
,neitvP
,setitv0
- lemmas
set_itvI
- lemmas and hints
has_lbound_itv
,has_ubound_itv
,hasNlbound_itv
,hasNubound_itv
,has_sup_half
,has_inf_half
- lemmas
opp_itv_bnd_infty
,opp_itvoo
,sup_itv
,inf_itv
,sup_itvcc
,inf_itvcc
setCitvl
,setCitvr
,setCitv
- lemmas
set_itv_splitD
,set_itvK
,RhullT
,RhullK
,itv_c_inftyEbigcap
,itv_bnd_inftyEbigcup
,itv_o_inftyEbigcup
,set_itv_setT
,set_itv_ge
- definitions
conv
,factor
- lemmas
conv_id
,convEl
,convEr
,conv10
,conv0
,conv1
,conv_sym
,conv_flat
,factorl
,factorr
,factor_flat
,mem_1B_itvcc
,factorK
,convK
,conv_inj
,conv_bij
,factor_bij
,leW_conv
,leW_factor
,le_conv
,le_factor
,lt_conv
,lt_factor
- definition
ndconv
- lemmas
ndconvE
,conv_itv_bij
,conv_itv_bij
,factor_itv_bij
,mem_conv_itv
,mem_factor_itv
,mem_conv_itvcc
,range_conv
,range_factor
,Rhull_smallest
,le_Rhull
,neitv_Rhull
,Rhull_involutive
- coercion
ereal_of_itv_bound
- lemmas
le_bnd_ereal
,lt_ereal_bnd
,neitv_bnd1
,neitv_bnd2
,Interval_ereal_mem
,ereal_mem_Interval
,trivIset_set_itv_nth
- definition
disjoint_itv
- lemmas
disjoint_itvxx
,lt_disjoint
,disjoint_neitv
,disj_itv_Rhull
- definition
- new file
numfun.v
- lemmas
restrict_set0
,restrict_ge0
,erestrict_set0
,erestrict_ge0
,ler_restrict
,lee_restrict
- definition
funenng
and notation^\+
, definitionfunennp
and notation^\-
- lemmas and hints
funenng_ge0
,funennp_ge0
- lemmas
funenngN
,funennpN
,funenng_restrict
,funennp_restrict
,ge0_funenngE
,ge0_funennpE
,le0_funenngE
,le0_funennpE
,gt0_funenngM
,gt0_funennpM
,lt0_funenngM
,lt0_funennpM
,fune_abse
,funenngnnp
,add_def_funennpg
,funeD_Dnng
,funeD_nngD
- definition
indic
and notation\1_
- lemmas
indicE
,indicT
,indic0
,indic_restrict
,restrict_indic
,preimage_indic
,image_indic
,image_indic_sub
- lemmas
- in
trigo.v
:- lemmas
acos1
,acos0
,acosN1
,acosN
,cosKN
,atan0
,atan1
- lemmas
- new file
lebesgue_measure.v
- new file
lebesgue_integral.v
- in
boolp.v
:equality_mixin_of_Type
,choice_of_Type
-> seeclassicalType
- in
topology.v
:- generalize
connected_continuous_connected
,continuous_compact
- arguments of
subspace
- definition
connected_component
- generalize
- in
sequences.v
:\sum
notations for extended real numbers now inereal_scope
- lemma
ereal_cvg_sub0
is now an equivalence
- in
derive.v
:- generalize
EVT_max
,EVT_min
,Rolle
,MVT
,ler0_derive1_nincr
,le0r_derive1_ndecr
with subspace topology - implicits of
cvg_at_rightE
,cvg_at_leftE
- generalize
- in
trigo.v
:- the
realType
argument ofpi
is implicit - the printed type of
acos
,asin
,atan
isR -> R
- the
- in
esum.v
(wascsum.v
):- lemma
esum_ge0
has now a weaker hypothesis
- lemma
- notation
`I_
moved fromcardinality.v
toclassical_sets.v
- moved from
classical_types.v
toboolp.v
:- definitions
gen_eq
andgen_eqMixin
, lemmagen_eqP
- canonicals
arrow_eqType
,arrow_choiceType
- definitions
dep_arrow_eqType
,dep_arrow_choiceClass
,dep_arrow_choiceType
- canonicals
Prop_eqType
,Prop_choiceType
- definitions
- in
classical_sets.v
:- arguments of
preimage
[set of f]
becomesrange f
(the old notation is still available but is displayed as the new one, and will be removed in future versions)
- arguments of
- in
cardinality.v
:- definition
card_eq
now uses{bij ... >-> ...}
- definition
card_le
now uses{injfun ... >-> ...}
- definition
set_finite
changed tofinite_set
- definition
card_leP
now usesreflect
- definition
card_le0P
now usesreflect
- definition
card_eqP
now usesreflect
- statement of theorem
Cantor_Bernstein
- lemma
subset_card_le
does not require finiteness of rhs anymore - lemma
surjective_card_le
does not require finiteness of rhs anymore and renamed tosurj_card_ge
- lemma
card_le_diff
does not require finiteness of rhs anymore and renamed tocard_le_setD
- lemma
card_eq_sym
now an equality - lemma
card_eq0
now an equality - lemmas
card_le_II
andcard_eq_II
now equalities - lemma
countable_injective
renamed tocountable_injP
and usereflect
- lemmas
II0
,II1
,IIn_eq0
moved toclassical_sets.v
- lemma
II_recr
renamed toIIS
and moved toclassical_sets.v
- definition
surjective
moved tofunctions.v
and renamedset_surj
- definition
set_bijective
moved tofunctions.v
and changed toset_bij
- lemma
surjective_id
moved tofunctions.v
and renamedsurj_id
- lemma
surjective_set0
moved tofunctions.v
and renamedsurj_set0
- lemma
surjectiveE
moved tofunctions.v
and renamedsurjE
- lemma
surj_image_eq
moved tofunctions.v
- lemma
can_surjective
moved tofunctions.v
and changed tocan_surj
- lemma
surjective_comp
moved tofunctions.v
and renamedsurj_comp
- lemma
set_bijective1
moved tofunctions.v
and renamedeq_set_bijRL
- lemma
set_bijective_image
moved tofunctions.v
and renamedinj_bij
- lemma
set_bijective_subset
moved tofunctions.v
and changed tobij_subr
- lemma
set_bijective_comp
moved tofunctions.v
and renamedset_bij_comp
- definition
inverse
changed topinv_
, seefunctions.v
- lemma
inj_of_bij
moved tofunctions.v
and renamed toset_bij_inj
- lemma
sur_of_bij
moved tofunctions.v
and renamed toset_bij_surj
- lemma
sub_of_bij
moved tofunctions.v
and renamed toset_bij_sub
- lemma
set_bijective_D1
moved tofunctions.v
and renamed tobij_II_D1
- lemma
injective_left_inverse
moved tofunctions.v
and changed topinvKV
- lemma
injective_right_inverse
moved tofunctions.v
and changed topinvK
- lemmas
image_nat_maximum
,fset_nat_maximum
moved tomathcomp_extra.v
- lemmas
enum0
,enum_recr
moved tomathcomp_extra.v
and renamed toenum_ord0
,enum_ordS
- lemma
in_inj_comp
moved tomathcomp_extra.v
- definition
- from
cardinality.v
toclassical_sets.v
:eq_set0_nil
->set_seq_eq0
eq_set0_fset0
->set_fset_eq0
- in
measure.v
:- definition
bigcup2
, lemmabigcup2E
moved toclassical_sets.v
- mixin
isSemiRingOfSets
andisRingOfSets
changed - types
semiRingOfSetsType
,ringOfSetsType
,algebraOfSetsType
,measurableType
now pointed types - definition
measurable_fun
changed - definition
sigma_sub_additive
changed and renamed tosigma_subadditive
- record
AdditiveMeasure.axioms
- lemmas
measure_ge0
- record
Measure.axioms
- definitions
seqDU
,seqD
, lemma and hinttrivIset_seqDU
, lemmasbigsetU_seqDU
,seqDU_bigcup_eq
,seqDUE
,trivIset_seqD
,bigsetU_seqD
,setU_seqD
,eq_bigsetU_seqD
,eq_bigcup_seqD
,eq_bigcup_seqD_bigsetU
moved tosequences.v
- definition
negligibleP
weakened to additive measures - lemma
measure_negligible
- definition
caratheodory_measurable
andcaratheodory_type
weakened from outer measures to functions - lemma
caratheodory_measure_ge0
does take a condition anymore - definitions
measurable_cover
andmu_ext
, canonicalouter_measure_of_measure
weakened tosemiRingOfSetsType
- definition
- in
ereal.v
:- lemmas
abse_ge0
,gee0_abs
,gte0_abs
,lee0_abs
,lte0_abs
,mulN1e
,muleN1
are generalized fromrealDomainType
tonumDomainType
- lemmas
- moved from
normedtype.v
tomathcomp_extra.v
:- lemmas
ler_addgt0Pr
,ler_addgt0Pl
,in_segment_addgt0Pr
,in_segment_addgt0Pl
,
- lemmas
- moved from
posnum.v
tomathcomp_extra.v
:- lemma
splitr
- lemma
- moved from
measure.v
tosequences.v
- lemma
cvg_geometric_series_half
- lemmas
realDe
,realDed
,realMe
,nadde_eq0
,padde_eq0
,adde_ss_eq0
,ndadde_eq0
,pdadde_eq0
,dadde_ss_eq0
,mulrpinfty_real
,mulpinftyr_real
,mulrninfty_real
,mulninftyr_real
,mulrinfty_real
- lemma
- moved from
topology.v
tofunctions.v
- section
function_space
(defintioncst
, definitionfct_zmodMixin
, canonicalfct_zmodType
, definitionfct_ringMixin
, canonicalfct_ringType
, canonicalfct_comRingType
, definitionfct_lmodMixin
, canonicalfct_lmodType
, lemmafct_lmodType
) - lemmas
addrfunE
,opprfunE
,mulrfunE
,scalrfunE
,cstE
,exprfunE
,compE
- definition
fctE
- section
- moved from
classical_sets.v
tofunctions.v
- definition
patch
, notationrestrict
andf \_ D
- definition
- in
topology.v
:closedC
->open_closedC
openC
->closed_openC
cvg_restrict_dep
->cvg_sigL
- in
classical_sets.v
:mkset_nil
->set_nil
- in
cardinality.v
:card_le0x
->card_ge0
card_eq_sym
->card_esym
set_finiteP
->finite_setP
set_finite0
->finite_set0
set_finite_seq
->finite_seq
set_finite_countable
->finite_set_countable
subset_set_finite
->sub_finite_set
set_finite_preimage
->finite_preimage
set_finite_diff
->finite_setD
countably_infinite_prod_nat
->card_nat2
- file
csum.v
renamed toesum.v
with the following renamings:\csum
->\esum
csum
->esum
csum0
->esum_set0
csum_ge0
->esum_ge0
csum_fset
->esum_fset
csum_image
->esum_image
csum_bigcup
->esum_bigcup
- in
ereal.v
:lte_subl_addl
->lte_subel_addl
lte_subr_addr
->lte_suber_addr
lte_dsubl_addl
->lte_dsubel_addl
lte_dsubr_addr
->lte_dsuber_addr
- in
ereal.v
:- lemmas
esum_fset_ninfty
,esum_fset_pinfty
- lemmas
desum_fset_pinfty
,desum_fset_ninfty
- lemmas
big_nat_widenl
,big_geq_mkord
- lemmas
- in
csum.v
:- lemmas
fsets_img
,fsets_ord
,fsets_ord_nat
,fsets_ord_subset
,csum_bigcup_le
,le_csum_bigcup
- lemmas
- in
classical_sets.v
:- lemma
subsetU
- definition
restrict_dep
,extend_up
, lemmarestrict_depE
- lemma
- in
cardinality.v
:- lemma
surjective_image
,surjective_image_eq0
- lemma
surjective_right_inverse
, - lemmas
card_le_surj
,card_eq00
- lemmas
card_eqTT
,card_eq_II
,card_eq_le
,card_leP
- lemmas
set_bijective_inverse
,countable_trans
,set_bijective_U1
,set_bijective_cyclic_shift
,set_bijective_cyclic_shift_simple
,set_finite_bijective
,subset_set_finite_card_le
,injective_set_finite_card_le
,injective_set_finite
,injective_card_le
,surjective_set_finite_card_le
,set_finite_inter_set0_union
,ex_in_D
. - definitions
min_of_D
,min_of_D_seq
,infsub_enum
- lemmas
min_of_D_seqE
,increasing_infsub_enum
,sorted_infsub_enum
,injective_infsub_enum
,subset_infsub_enum
,infinite_nat_subset_countable
- definition
enumeration
- lemmas
enumeration_id
,enumeration_set0
,ex_enum_notin
- defnitions
min_of_e
,min_of_e_seq
,smallest_of_e
,enum_wo_rep
- lemmas
enum_wo_repE
,min_of_e_seqE
,smallest_of_e_notin_enum_wo_rep
,injective_enum_wo_rep
,surjective_enum_wo_rep
,set_bijective_enum_wo_rep
,enumeration_enum_wo_rep
,countable_enumeration
- definition
nat_of_pair
- lemmas
nat_of_pair_inj
,countable_prod_nat
- lemma
- in
measure.v
:- definition
diff_fsets
- lemmas
semiRingOfSets_measurableI
,semiRingOfSets_measurableD
,semiRingOfSets_diff_fsetsE
,semiRingOfSets_diff_fsets_disjoint
- definition
uncurry
- definition
- in
sequences.v
:- lemmas
leq_fact
,prod_rev
,fact_split
(now in MathComp)
- lemmas
- in
boolp.v
- module BoolQuant with notations
`[forall x P]
and`[exists x P]
(subsumed by`[< >]
) - definition
xchooseb
- lemmas
existsPP
,forallPP
,existsbP
,forallbP
,forallbE
,existsp_asboolP
,forallp_asboolP
,xchoosebP
,imsetbP
- module BoolQuant with notations
- in
normedtype.v
:- lemmas
nbhs_pinfty_gt_pos
,nbhs_pinfty_ge_pos
,nbhs_ninfty_lt_pos
,nbhs_ninfty_le_pos
- lemmas
- in
topology.v
:- definitions
kolmogorov_space
,accessible_space
- lemmas
accessible_closed_set1
,accessible_kolmogorov
- lemma
filter_pair_set
- definition
prod_topo_apply
- lemmas
prod_topo_applyE
,prod_topo_apply_continuous
,hausdorff_product
- definitions
- in
ereal.v
:- lemmas
lee_pemull
,lee_nemul
,lee_pemulr
,lee_nemulr
- lemma
fin_numM
- definition
mule_def
, notationx *? y
- lemma
mule_defC
- notations
\*
inereal_scope
, andereal_dual_scope
- lemmas
mule_def_fin
,mule_def_neq0_infty
,mule_def_infty_neq0
,neq0_mule_def
- notation
\-
inereal_scope
andereal_dual_scope
- lemma
fin_numB
- lemmas
mule_eq_pinfty
,mule_eq_ninfty
- lemmas
fine_eq0
,abse_eq0
- lemmas
- in
sequences.v
:- lemmas
ereal_cvgM_gt0_pinfty
,ereal_cvgM_lt0_pinfty
,ereal_cvgM_gt0_ninfty
,ereal_cvgM_lt0_ninfty
,ereal_cvgM
- lemmas
- in
topology.v
:- renamed and generalized
setC_subset_set1C
implication to equivalencesubsetC1
- renamed and generalized
- in
ereal.v
:- lemmas
ereal_sup_gt
,ereal_inf_lt
now useexists2
- lemmas
- notation
\*
moved fromrealseq.v
totopology.v
- in `topology.v:
hausdorff
->hausdorff_space
- in
realseq.v
:- notation
\-
- notation
- add
.dir-locals.el
for company-coq symbols
- in
boolp.v
:- lemmas
not_True
,not_False
- lemmas
- in
classical_sets.v
:- lemma
setDIr
- lemmas
setMT
,setTM
,setMI
- lemmas
setSM
,setM_bigcupr
,setM_bigcupl
- lemmas
cover_restr
,eqcover_r
- lemma
notin_set
- lemma
- in
reals.v
:- lemma
has_ub_lbN
- lemma
- in
ereal.v
:- lemma
onee_eq0
- lemma
EFinB
- lemmas
mule_eq0
,mule_lt0_lt0
,mule_gt0_lt0
,mule_lt0_gt0
,pmule_rge0
,pmule_lge0
,nmule_lge0
,nmule_rge0
,pmule_rgt0
,pmule_lgt0
,nmule_lgt0
,nmule_rgt0
- lemmas
muleBr
,muleBl
- lemma
eqe_absl
- lemma
lee_pmul
- lemmas
fin_numElt
,fin_numPlt
- lemma
- in
topology.v
- lemmas
cstE
,compE
,opprfunE
,addrfunE
,mulrfunE
,scalrfunE
,exprfunE
- multi-rule
fctE
- lemmas
within_interior
,within_subset,
withinE
,fmap_within_eq
- definitions
subspace
,incl_subspace
. - canonical instances of
pointedType
,filterType
,topologicalType
,uniformType
andpseudoMetricType
onsubspace
. - lemmas
nbhs_subspaceP
,nbhs_subspace_in
,nbhs_subspace_out
,subspace_cvgP
,subspace_continuousP
,subspace_eq_continuous
,nbhs_subspace_interior
,nbhs_subspace_ex
,incl_subspace_continuous
,open_subspace1out
,open_subspace_out
,open_subspaceT
,open_subspaceIT
,open_subspaceTI
,closed_subspaceT
,open_subspaceP
,open_subspaceW
,subspace_hausdorff
, andcompact_subspaceIP
.
- lemmas
- in
normedtype.v
- lemmas
continuous_shift
,continuous_withinNshiftx
- lemmas
bounded_fun_has_ubound
,bounded_funN
,bounded_fun_has_lbound
,bounded_funD
- lemmas
- in
derive.v
- lemmas
derive1_comp
,derivable_cst
,derivable_id
, trigger_derive` - instances
is_derive_id
,is_derive_Nid
- lemmas
- in
sequences.v
:- lemmas
cvg_series_bounded
,cvg_to_0_linear
,lim_cvg_to_0_linear
. - lemma
cvg_sub0
- lemma
cvg_zero
- lemmas
ereal_cvg_abs0
,ereal_cvg_sub0
,ereal_squeeze
- lemma
ereal_is_cvgD
- lemmas
- in
measure.v
:- hints for
measurable0
andmeasurableT
- hints for
- file
realfun.v
:- lemma
is_derive1_caratheodory
,is_derive_0_is_cst
- instance
is_derive1_comp
- lemmas
is_deriveV
,is_derive_inverse
- lemma
- new file
nsatz_realType
- new file
exp.v
- lemma
normr_nneg
(hint) - definitions
pseries
,pseries_diffs
- facts
is_cvg_pseries_inside_norm
,is_cvg_pseries_inside
- lemmas
pseries_diffsN
,pseries_diffs_inv_fact
,pseries_diffs_sumE
,pseries_diffs_equiv
,is_cvg_pseries_diffs_equiv
,pseries_snd_diffs
- lemmas
expR0
,expR_ge1Dx
,exp_coeffE
,expRE
- instance
is_derive_expR
- lemmas
derivable_expR
,continuous_expR
,expRxDyMexpx
,expRxMexpNx_1
- lemmas
pexpR_gt1
,expR_gt0
,expRN
,expRD
,expRMm
- lemmas
expR_gt1
,expR_lt1
,expRB
,ltr_expR
,ler_expR
,expR_inj
,expR_total_gt1
,expR_total
- definition
ln
- fact
ln0
- lemmas
expK
,lnK
,ln1
,lnM
,ln_inj
,lnV
,ln_div
,ltr_ln
,ler_ln
,lnX
- lemmas
le_ln1Dx
,ln_sublinear
,ln_ge0
,ln_gt0
- lemma
continuous_ln
- instance
is_derive1_ln
- definition
exp_fun
, notation`^
- lemmas
exp_fun_gt0
,exp_funr1
,exp_funr0
,exp_fun1
,ler_exp_fun
,exp_funD
,exp_fun_inv
,exp_fun_mulrn
- definition
riemannR
, lemmasriemannR_gt0
,dvg_riemannR
- lemma
- new file
trigo.v
- lemmas
sqrtvR
,eqr_div
,big_nat_mul
,cvg_series_cvg_series_group
,lt_sum_lim_series
- definitions
periodic
,alternating
- lemmas
periodicn
,alternatingn
- definition
sin_coeff
- lemmas
sin_coeffE
,sin_coeff_even
,is_cvg_series_sin_coeff
- definition
sin
- lemmas
sinE
- definition
sin_coeff'
- lemmas
sin_coeff'E
,cvg_sin_coeff'
,diffs_sin
,series_sin_coeff0
,sin0
- definition
cos_coeff
- lemmas
cos_ceff_2_0
,cos_coeff_2_2
,cos_coeff_2_4
,cos_coeffE
,is_cvg_series_cos_coeff
- definition
cos
- lemma
cosE
- definition
cos_coeff'
- lemmas
cos_coeff'E
,cvg_cos_coeff'
,diffs_cos
,series_cos_coeff0
,cos0
- instance
is_derive_sin
- lemmas
derivable_sin
,continuous_sin
,is_derive_cos
,derivable_cos
,continuous_cos
- lemmas
cos2Dsin2
,cos_max
,cos_geN1
,cos_le1
,sin_max
,sin_geN1
,sin_le1
- fact
sinD_cosD
- lemmas
sinD
,cosD
- lemmas
sin2cos2
,cos2sin2
,sin_mulr2n
,cos_mulr2n
- fact
sinN_cosN
- lemmas
sinN
,cosN
- lemmas
sin_sg
,cos_sg
,cosB
,sinB
- lemmas
norm_cos_eq1
,norm_sin_eq1
,cos1sin0
,sin0cos1
,cos_norm
- definition
pi
- lemmas
pihalfE
,cos2_lt0
,cos_exists
- lemmas
sin2_gt0
,cos_pihalf_uniq
,pihalf_02_cos_pihalf
,pihalf_02
,pi_gt0
,pi_ge0
- lemmas
sin_gt0_pihalf
,cos_gt0_pihalf
,cos_pihalf
,sin_pihalf
,cos_ge0_pihalf
,cospi
,sinpi
- lemmas
cos2pi
,sin2pi
,sinDpi
,cosDpi
,sinD2pi
,cosD2pi
- lemmas
cosDpihalf
,cosBpihalf
,sinDpihalf
,sinBpihalf
,sin_ge0_pi
- lemmas
ltr_cos
,ltr_sin
,cos_inj
,sin_inj
- definition
tan
- lemmas
tan0
,tanpi
,tanN
,tanD
,tan_mulr2n
,cos2_tan2
- lemmas
tan_pihalf
,tan_piquarter
,tanDpi
,continuous_tan
- lemmas
is_derive_tan
,derivable_tan
,ltr_tan
,tan_inj
- definition
acos
- lemmas
acos_def
,acos_ge0
,acos_lepi
,acosK
,acos_gt0
,acos_ltpi
- lemmas
cosK
,sin_acos
,continuous_acos
,is_derive1_acos
- definition
asin
- lemmas
asin_def
,asin_geNpi2
,asin_lepi2
,asinK
,asin_ltpi2
,asin_gtNpi2
- lemmas
sinK
,cos_asin
,continuous_asin
,is_derive1_asin
- definition
atan
- lemmas
atan_def
,atan_gtNpi2
,atan_ltpi2
,atanK
,tanK
- lemmas
continuous_atan
,cos_atan
- instance
is_derive1_atan
- lemmas
- in
normedtype.v
:nbhs_minfty_lt
renamed tonbhs_ninfty_lt_pos
and changed to not use{posnum R}
nbhs_minfty_le
renamed tonbhs_ninfty_le_pos
and changed to not use{posnum R}
- in
sequences.v
:- lemma
is_cvg_ereal_nneg_natsum
: remove superfluousP
parameter - statements of lemmas
nondecreasing_cvg
,nondecreasing_is_cvg
,nonincreasing_cvg
,nonincreasing_is_cvg
usehas_{l,u}bound
predicates instead of requiring an additional variable - statement of lemma
S1_sup
useubound
instead of requiring an additional variable
- lemma
- in
normedtype.v
:nbhs_minfty_lt_real
->nbhs_ninfty_lt
nbhs_minfty_le_real
->nbhs_ninfty_le
- in
sequences.v
:cvgNminfty
->cvgNninfty
cvgPminfty
->cvgPninfty
ler_cvg_minfty
->ler_cvg_ninfty
nondecreasing_seq_ereal_cvg
->ereal_nondecreasing_cvg
- in
normedtype.v
:nbhs_pinfty_gt
->nbhs_pinfty_gt_pos
nbhs_pinfty_ge
->nbhs_pinfty_ge_pos
nbhs_pinfty_gt_real
->nbhs_pinfty_gt
nbhs_pinfty_ge_real
->nbhs_pinfty_ge
- in
measure.v
:measure_bigcup
->measure_bigsetU
- in
ereal.v
:mulrEDr
->muleDr
mulrEDl
->muleDl
dmulrEDr
->dmuleDr
dmulrEDl
->dmuleDl
NEFin
->EFinN
addEFin
->EFinD
mulEFun
->EFinM
daddEFin
->dEFinD
dsubEFin
->dEFinB
- in
ereal.v
:- lemma
subEFin
- lemma
- in
Makefile.common
- add
doc
anddoc-clean
targets
- add
- in
boolp.v
:- lemmas
orA
,andA
- lemmas
- in
classical_sets.v
- lemma
setC_inj
, - lemma
setD1K
, - lemma
subTset
, - lemma
setUidPr
,setUidl
andsetUidr
, - lemma
setIidPr
,setIidl
andsetIidr
, - lemma
set_fset0
,set_fset1
,set_fsetI
,set_fsetU
, - lemma
bigcap_inf
,subset_bigcup_r
,subset_bigcap_r
,eq_bigcupl
,eq_bigcapl
,eq_bigcup
,eq_bigcap
,bigcupU
,bigcapI
,bigcup_const
,bigcap_const
,bigcapIr
,bigcupUr
,bigcap_set0
,bigcap_set1
,bigcap0
,bigcapT
,bigcupT
,bigcapTP
,setI_bigcupl
,setU_bigcapl
,bigcup_mkcond
,bigcap_mkcond
,setC_bigsetU
,setC_bigsetI
,bigcap_set_cond
,bigcap_set
,bigcap_split
,bigcap_mkord
,subset_bigsetI
,subset_bigsetI_cond
,bigcap_image
- lemmas
bigcup_setU1
,bigcap_setU1
,bigcup_setU
,bigcap_setU
,bigcup_fset
,bigcap_fset
,bigcup_fsetU1
,bigcap_fsetU1
,bigcup_fsetD1
,bigcap_fsetD1
, - definition
mem_set : A u -> u \in A
- lemmas
in_setP
andin_set2P
- lemma
forall_sig
- definition
patch
, notationrestrict
andf \_ D
, definitionsrestrict_dep
andextend_dep
, with lemmasrestrict_depE
,fun_eq_inP
,extend_restrict_dep
,extend_depK
,restrict_extend_dep
,restrict_dep_restrict
,restrict_dep_setT
- lemmas
setUS
,setSU
,setUSS
,setUCA
,setUAC
,setUACA
,setUUl
,setUUr
- lemmas
bigcup_image
,bigcup_of_set1
,set_fset0
,set_fset1
,set_fsetI
,set_fsetU
,set_fsetU1
,set_fsetD
,set_fsetD1
, - notation
[set` i]
- notations
set_itv
,`[a, b]
,`]a, b]
,`[a, b[
,`]a, b[
,`]-oo, b]
,`]-oo, b[
,`[a, +oo]
,`]a, +oo]
,`]-oo, +oo[
- lemmas
setDDl
,setDDr
- lemma
- in
topology.v
:- lemma
fmap_comp
- definition
finSubCover
- notations
{uniform` A -> V }
and{uniform U -> V}
and their canonical structures of uniform type. - definition
uniform_fun
to cast into - notations
{uniform A, F --> f }
and{uniform, F --> f}
- lemma
uniform_cvgE
- lemma
uniform_nbhs
- notation
{ptws U -> V}
and its canonical structure of topological type, - definition
ptws_fun
- notation
{ptws F --> f }
- lemma
ptws_cvgE
- lemma
ptws_uniform_cvg
- lemma
cvg_restrict_dep
- lemma
eq_in_close
- lemma
hausdorrf_close_eq_in
- lemma
uniform_subset_nbhs
- lemma
uniform_subset_cvg
- lemma
uniform_restrict_cvg
- lemma
cvg_uniformU
- lemma
cvg_uniform_set0
- notation
{family fam, U -> V}
and its canonical structure of topological type - notation
{family fam, F --> f}
- lemma
fam_cvgP
- lemma
fam_cvgE
- definition
compactly_in
- lemma
family_cvg_subset
- lemma
family_cvg_finite_covers
- lemma
compact_cvg_within_compact
- lemma
le_bigmax
- definition
monotonous
- lemma
and_prop_in
- lemmas
mem_inc_segment
,mem_dec_segment
- lemmas
ltr_distlC
,ler_distlC
- lemmas
subset_ball_prop_in_itv
,subset_ball_prop_in_itvcc
- lemma
dense_rat
- lemma
- in
normedtype.v
:- lemma
is_intervalPlt
- lemma
mule_continuous
- lemmas
ereal_is_cvgN
,ereal_cvgZr
,ereal_is_cvgZr
,ereal_cvgZl
,ereal_is_cvgZl
,ereal_limZr
,ereal_limZl
,ereal_limN
- lemma
bound_itvE
- lemmas
nearN
,near_in_itv
- lemmas
itvxx
,itvxxP
,subset_itv_oo_cc
- lemma
at_right_in_segment
- notations
f @`[a, b]
,g @`]a , b[
- lemmas
mono_mem_image_segment
,mono_mem_image_itvoo
,mono_surj_image_segment
,inc_segment_image
,dec_segment_image
,inc_surj_image_segment
,dec_surj_image_segment
,inc_surj_image_segmentP
,dec_surj_image_segmentP
,mono_surj_image_segmentP
- lemma
- in
reals.v
:- lemmas
floor1
,floor_neq0
- lemma
int_lbound_has_minimum
- lemma
rat_in_itvoo
- lemmas
- in
ereal.v
:- notation
x +? y
foradde_def x y
- lemmas
ge0_adde_def
,onee_neq0
,mule0
,mul0e
- lemmas
mulrEDr
,mulrEDl
,ge0_muleDr
,ge0_muleDl
- lemmas
ge0_sume_distrl
,ge0_sume_distrr
- lemmas
mulEFin
,mule_neq0
,mule_ge0
,muleA
- lemma
muleE
- lemmas
muleN
,mulNe
,muleNN
,gee_pmull
,lee_mul01Pr
- lemmas
lte_pdivr_mull
,lte_pdivr_mulr
,lte_pdivl_mull
,lte_pdivl_mulr
,lte_ndivl_mulr
,lte_ndivl_mull
,lte_ndivr_mull
,lte_ndivr_mulr
- lemmas
lee_pdivr_mull
,lee_pdivr_mulr
,lee_pdivl_mull
,lee_pdivl_mulr
,lee_ndivl_mulr
,lee_ndivl_mull
,lee_ndivr_mull
,lee_ndivr_mulr
- lemmas
mulrpinfty
,mulrninfty
,mulpinftyr
,mulninftyr
,mule_gt0
- definition
mulrinfty
- lemmas
mulN1e
,muleN1
- lemmas
mule_ninfty_pinfty
,mule_pinfty_ninfty
,mule_pinfty_pinfty
- lemmas
mule_le0_ge0
,mule_ge0_le0
,pmule_rle0
,pmule_lle0
,nmule_lle0
,nmule_rle0
- lemma
sube0
- lemmas
adde_le0
,sume_le0
,oppe_ge0
,oppe_le0
,lte_opp
,gee_addl
,gee_addr
,lte_addr
,gte_subl
,gte_subr
,lte_le_sub
,lee_sum_npos_subset
,lee_sum_npos
,lee_sum_npos_ord
,lee_sum_npos_natr
,lee_sum_npos_natl
,lee_sum_npos_subfset
,lee_opp
,le0_muleDl
,le0_muleDr
,le0_sume_distrl
,le0_sume_distrr
,adde_defNN
,minEFin
,mine_ninftyl
,mine_ninftyr
,mine_pinftyl
,mine_pinftyr
,oppe_max
,oppe_min
,mineMr
,mineMl
- definitions
dual_adde
- notations for the above in scope
ereal_dual_scope
delimited bydE
- lemmas
dual_addeE
,dual_sumeE
,dual_addeE_def
,daddEFin
,dsumEFin
,dsubEFin
,dadde0
,dadd0e
,daddeC
,daddeA
,daddeAC
,daddeCA
,daddeACA
,doppeD
,dsube0
,dsub0e
,daddeK
,dfin_numD
,dfineD
,dsubeK
,dsube_eq
,dsubee
,dadde_eq_pinfty
,daddooe
,dadde_Neq_pinfty
,dadde_Neq_ninfty
,desum_fset_pinfty
,desum_pinfty
,desum_fset_ninfty
,desum_ninfty
,dadde_ge0
,dadde_le0
,dsume_ge0
,dsume_le0
,dsube_lt0
,dsubre_le0
,dsuber_le0
,dsube_ge0
,lte_dadd
,lee_daddl
,lee_daddr
,gee_daddl
,gee_daddr
,lte_daddl
,lte_daddr
,gte_dsubl
,gte_dsubr
,lte_dadd2lE
,lee_dadd2l
,lee_dadd2lE
,lee_dadd2r
,lee_dadd
,lte_le_dadd
,lee_dsub
,lte_le_dsub
,lee_dsum
,lee_dsum_nneg_subset
,lee_dsum_npos_subset
,lee_dsum_nneg
,lee_dsum_npos
,lee_dsum_nneg_ord
,lee_dsum_npos_ord
,lee_dsum_nneg_natr
,lee_dsum_npos_natr
,lee_dsum_nneg_natl
,lee_dsum_npos_natl
,lee_dsum_nneg_subfset
,lee_dsum_npos_subfset
,lte_dsubl_addr
,lte_dsubl_addl
,lte_dsubr_addr
,lee_dsubr_addr
,lee_dsubl_addr
,ge0_dsume_distrl
,dmulrEDr
,dmulrEDl
,dge0_mulreDr
,dge0_mulreDl
,dle0_mulreDr
,dle0_mulreDl
,ge0_dsume_distrr
,le0_dsume_distrl
,le0_dsume_distrr
,lee_abs_dadd
,lee_abs_dsum
,lee_abs_dsub
,dadde_minl
,dadde_minr
,lee_dadde
,lte_spdaddr
- lemmas
abse0
,abse_ge0
,lee_abs
,abse_id
,lee_abs_add
,lee_abs_sum
,lee_abs_sub
,gee0_abs
,gte0_abs
,lee_abs
,lte0_abs
,abseM
,lte_absl
,eqe_absl
- notations
maxe
,mine
- lemmas
maxEFin
,adde_maxl
,adde_maxr
,maxe_pinftyl
,maxe_pinftyr
,maxe_ninftyl
,maxe_ninftyr
- lemmas
sub0e
,lee_wpmul2r
,mule_ninfty_ninfty
- lemmas
sube_eq
lte_pmul2r
,lte_pmul2l
,lte_nmul2l
,lte_nmul2r
,mule_le0
,pmule_llt0
,pmule_rlt0
,nmule_llt0
,nmule_rlt0
,mule_lt0
- lemmas
maxeMl
,maxeMr
- lemmas
lte_0_pinfty
,lte_ninfty_0
,lee_0_pinfty
,lee_ninfty_0
,oppe_gt0
,oppe_lt0
- lemma
telescope_sume
- lemmas
lte_add_pinfty
,lte_sum_pinfty
- notation
- in
cardinality.v
:- definition
nat_of_pair
, lemmanat_of_pair_inj
- lemmas
surjectiveE
,surj_image_eq
,can_surjective
- definition
- in
sequences.v
:- lemmas
lt_lim
,nondecreasing_dvg_lt
,ereal_lim_sum
- lemmas
ereal_nondecreasing_opp
,ereal_nondecreasing_is_cvg
,ereal_nonincreasing_cvg
,ereal_nonincreasing_is_cvg
- lemmas
- file
realfun.v
:- lemmas
itv_continuous_inj_le
,itv_continuous_inj_ge
,itv_continuous_inj_mono
- lemmas
segment_continuous_inj_le
,segment_continuous_inj_ge
,segment_can_le
,segment_can_ge
,segment_can_mono
- lemmas
segment_continuous_surjective
,segment_continuous_le_surjective
,segment_continuous_ge_surjective
- lemmas
continuous_inj_image_segment
,continuous_inj_image_segmentP
,segment_continuous_can_sym
,segment_continuous_le_can_sym
,segment_continuous_ge_can_sym
,segment_inc_surj_continuous
,segment_dec_surj_continuous
,segment_mono_surj_continuous
- lemmas
segment_can_le_continuous
,segment_can_ge_continuous
,segment_can_continuous
- lemmas
near_can_continuousAcan_sym
,near_can_continuous
,near_continuous_can_sym
- lemmas
exp_continuous
,sqr_continuous
,sqrt_continuous
.
- lemmas
- in
measure.v
:- definition
seqDU
- lemmas
trivIset_seqDU
,bigsetU_seqDU
,seqDU_bigcup_eq
,seqDUE
- lemmas
bigcup_measurable
,bigcap_measurable
,bigsetI_measurable
- definition
- in
classical_sets.v
setU_bigcup
->bigcupUl
and reversedsetI_bigcap
->bigcapIl
and reversed- removed spurious disjunction in
bigcup0P
bigcup_ord
->bigcup_mkord
and reversedbigcup_of_set1
->bigcup_imset1
bigcupD1
->bigcup_setD1
andbigcapD1
->bigcap_setD1
and rephrased usingP `\ x
instead ofP `&` ~` [set x]
- order of arguments for
setIS
,setSI
,setUS
,setSU
,setSD
,setDS
- generalize lemma
perm_eq_trivIset
- in
topology.v
:- replace
closed_cvg_loc
andclosed_cvg
by a more general lemmaclosed_cvg
- replace
- in
normedtype.v
:- remove useless parameter from lemma
near_infty_natSinv_lt
- definition
is_interval
- the following lemmas have been generalized to
orderType
, renamed as follows, moved out of the moduleBigmaxBigminr
totopology.v
:bigmaxr_mkcond
->bigmax_mkcond
bigmaxr_split
->bigmax_split
bigmaxr_idl
->bigmax_idl
bigmaxrID
->bigmaxID
bigmaxr_seq1
->bigmax_seq1
bigmaxr_pred1_eq
->bigmax_pred1_eq
bigmaxr_pred1
->bigmax_pred1
bigmaxrD1
->bigmaxD1
ler_bigmaxr_cond
->ler_bigmax_cond
ler_bigmaxr
->ler_bigmax
bigmaxr_lerP
->bigmax_lerP
bigmaxr_sup
->bigmax_sup
bigmaxr_ltrP
->bigmax_ltrP
bigmaxr_gerP
->bigmax_gerP
bigmaxr_eq_arg
->bigmax_eq_arg
bigmaxr_gtrP
->bigmax_gtrP
eq_bigmaxr
->eq_bigmax
- module
BigmaxBigminr
->Bigminr
- remove useless parameter from lemma
- in
ereal.v
:- change definition
mule
such that 0 x oo = 0 adde
now defined usingnosimpl
andadde_subdef
mule
now defined usingnosimpl
andmule_subdef
- lemmas
lte_addl
,lte_subl_addr
,lte_subl_addl
,lte_subr_addr
,lte_subr_addr
,lte_subr_addr
,lb_ereal_inf_adherent
oppeD
to usefin_num
- weaken
realDomainType
tonumDomainType
inmule_ninfty_pinfty
,mule_pinfty_ninfty
,mule_pinfty_pinfty
,mule_ninfty_ninfty
,mule_neq0
,mule_ge0
,mule_le0
,mule_gt0
,mule_le0_ge0
,mule_ge0_le0
- change definition
- in
reals.v
:- generalize from
realType
torealDomainType
lemmashas_ub_image_norm
,has_inf_supN
- generalize from
- in
sequences.v
:- generalize from
realType
torealFieldType
lemmascvg_has_ub
,cvg_has_sup
,cvg_has_inf
- change the statements of
cvgPpinfty
,cvgPminfty
,cvgPpinfty_lt
- generalize
nondecreasing_seqP
,nonincreasing_seqP
,increasing_seqP
,decreasing_seqP
to equivalences - generalize
lee_lim
,ereal_cvgD_pinfty_fin
,ereal_cvgD_ninfty_fin
,ereal_cvgD
,ereal_limD
,ereal_pseries0
,eq_ereal_pseries
fromrealType
torealFieldType
- lemma
ereal_pseries_pred0
moved fromcsum.v
, minor generalization
- generalize from
- in
landau.v
:- lemma
cvg_shift
renamed tocvg_comp_shift
and moved tonormedtype.v
- lemma
- in
measure.v
:- lemmas
measureDI
,measureD
,sigma_finiteP
- lemmas
exist_congr
->eq_exist
and moved fromclasssical_sets.v
toboolp.v
predeqP
moved fromclasssical_sets.v
toboolp.v
- moved from
landau.v
tonormedtype.v
:- lemmas
comp_shiftK
,comp_centerK
,shift0
,center0
,near_shift
,cvg_shift
- lemmas
- lemma
exists2P
moved fromtopology.v
toboolp.v
- move from
sequences.v
tonormedtype.v
and generalize fromnat
toT : topologicalType
- lemmas
ereal_cvgN
- lemmas
- in
classical_sets.v
eqbigcup_r
->eq_bigcupr
eqbigcap_r
->eq_bigcapr
bigcup_distrr
->setI_bigcupr
bigcup_distrl
->setI_bigcupl
bigcup_refl
->bigcup_splitn
setMT
->setMTT
- in
ereal.v
:adde
->adde_subdef
mule
->mule_subdef
real_of_extended
->fine
real_of_extendedN
->fineN
real_of_extendedD
->fineD
EFin_real_of_extended
->fineK
real_of_extended_expand
->fine_expand
- in
sequences.v
:nondecreasing_seq_ereal_cvg
->nondecreasing_ereal_cvg
- in
topology.v
:nbhs'
->dnbhs
nbhsE'
->dnbhs
nbhs'_filter
->dnbhs_filter
nbhs'_filter_on
->dnbhs_filter_on
nbhs_nbhs'
->nbhs_dnbhs
Proper_nbhs'_regular_numFieldType
->Proper_dnbhs_regular_numFieldType
Proper_nbhs'_numFieldType
->Proper_dnbhs_numFieldType
ereal_nbhs'
->ereal_dnbhs
ereal_nbhs'_filter
->ereal_dnbhs_filter
ereal_nbhs'_le
->ereal_dnbhs_le
ereal_nbhs'_le_finite
->ereal_dnbhs_le_finite
Proper_nbhs'_numFieldType
->Proper_dnbhs_numFieldType
Proper_nbhs'_realType
->Proper_dnbhs_realType
nbhs'0_lt
->dnbhs0_lt
nbhs'0_le
->dnbhs0_le
continuity_pt_nbhs'
->continuity_pt_dnbhs
- in
measure.v
:measure_additive2
->measureU
measure_additive
->measure_bigcup
- in
boolp.v
:- definition
PredType
- local notation
predOfType
- definition
- in
nngnum.v
:- module
BigmaxrNonneg
containing the following lemmas:bigmaxr_mkcond
,bigmaxr_split
,bigmaxr_idl
,bigmaxrID
,bigmaxr_seq1
,bigmaxr_pred1_eq
,bigmaxr_pred1
,bigmaxrD1
,ler_bigmaxr_cond
,ler_bigmaxr
,bigmaxr_lerP
,bigmaxr_sup
,bigmaxr_ltrP
,bigmaxr_gerP
,bigmaxr_gtrP
- module
- in
sequences.v
:- lemma
closed_seq
- lemma
- in
normedtype.v
:- lemma
is_intervalPle
- lemma
- in
topology.v
:- lemma
continuous_cst
- definition
cvg_to_locally
- lemma
- in
csum.v
:- lemma
ub_ereal_sup_adherent_img
- lemma
- in
classical_sets.v
:- lemmas
bigcup_image
,bigcup_of_set1
- lemmas
bigcupD1
,bigcapD1
- lemmas
- in
boolp.v
:- definitions
equality_mixin_of_Type
,choice_of_Type
- definitions
- in
normedtype.v
:- lemma
cvg_bounded_real
- lemma
pseudoMetricNormedZModType_hausdorff
- lemma
- in
sequences.v
:- lemmas
seriesN
,seriesD
,seriesZ
,is_cvg_seriesN
,lim_seriesN
,is_cvg_seriesZ
,lim_seriesZ
,is_cvg_seriesD
,lim_seriesD
,is_cvg_seriesB
,lim_seriesB
,lim_series_le
,lim_series_norm
- lemmas
- in
measure.v
:- HB.mixin
AlgebraOfSets_from_RingOfSets
- HB.structure
AlgebraOfSets
and notationalgebraOfSetsType
- HB.instance
T_isAlgebraOfSets
in HB.buildersisAlgebraOfSets
- lemma
bigcup_set_cond
- definition
measurable_fun
- lemma
adde_undef_nneg_series
- lemma
adde_def_nneg_series
- lemmas
cvg_geometric_series_half
,epsilon_trick
- definition
measurable_cover
- lemmas
cover_measurable
,cover_subset
- definition
mu_ext
- lemmas
le_mu_ext
,mu_ext_ge0
,mu_ext0
,measurable_uncurry
,mu_ext_sigma_subadditive
- canonical
outer_measure_of_measure
- HB.mixin
- in
ereal.v
, definitionadde_undef
changed toadde_def
- consequently, the following lemmas changed:
- in
ereal.v
,adde_undefC
renamed toadde_defC
,fin_num_adde_undef
renamed tofin_num_adde_def
- in
sequences.v
,ereal_cvgD
andereal_limD
now use hypotheses withadde_def
- in
- consequently, the following lemmas changed:
- in
sequences.v
:- generalize
{in,de}creasing_seqP
,non{in,de}creasing_seqP
fromnumDomainType
toporderType
- generalize
- in
normedtype.v
:- generalized from
normedModType
topseudoMetricNormedZmodType
:nbhs_le_nbhs_norm
nbhs_norm_le_nbhs
nbhs_nbhs_norm
nbhs_normP
filter_from_norm_nbhs
nbhs_normE
filter_from_normE
near_nbhs_norm
nbhs_norm_ball_norm
nbhs_ball_norm
ball_norm_dec
ball_norm_sym
ball_norm_le
cvg_distP
cvg_dist
nbhs_norm_ball
dominated_by
strictly_dominated_by
sub_dominatedl
sub_dominatedr
dominated_by1
strictly_dominated_by1
ex_dom_bound
ex_strict_dom_bound
bounded_near
boundedE
sub_boundedr
sub_boundedl
ex_bound
ex_strict_bound
ex_strict_bound_gt0
norm_hausdorff
norm_closeE
norm_close_eq
norm_cvg_unique
norm_cvg_eq
norm_lim_id
norm_cvg_lim
norm_lim_near_cst
norm_lim_cst
norm_cvgi_unique
norm_cvgi_map_lim
distm_lt_split
distm_lt_splitr
distm_lt_splitl
normm_leW
normm_lt_split
cvg_distW
continuous_cvg_dist
add_continuous
- generalized from
- in
measure.v
:- generalize lemma
eq_bigcupB_of
- HB.mixin
Measurable_from_ringOfSets
changed toMeasurable_from_algebraOfSets
- HB.instance
T_isRingOfSets
becomesT_isAlgebraOfSets
in HB.buildersisMeasurable
- lemma
measurableC
now applies toalgebraOfSetsType
instead ofmeasureableType
- generalize lemma
- moved from
normedtype.v
toreals.v
:- lemmas
inf_lb_strict
,sup_ub_strict
- lemmas
- moved from
sequences.v
toreals.v
:- lemma
has_ub_image_norm
- lemma
- in
classical_sets.v
:bigcup_mkset
->bigcup_set
bigsetU
->bigcup
bigsetI
->bigcap
trivIset_bigUI
->trivIset_bigsetUI
- in
measure.v
:isRingOfSets
->isAlgebraOfSets
B_of
->seqD
trivIset_B_of
->trivIset_seqD
UB_of
->setU_seqD
bigUB_of
->bigsetU_seqD
eq_bigsetUB_of
->eq_bigsetU_seqD
eq_bigcupB_of
->eq_bigcup_seqD
eq_bigcupB_of_bigsetU
->eq_bigcup_seqD_bigsetU
- in
nngnum.v
:- lemma
filter_andb
- lemma
- in
sequences.v
:- lemma
dvg_harmonic
- lemma
- in
classical_sets.v
:- definitions
image
,image2
- definitions
- in
classical_sets.v
- notations
[set E | x in A]
and[set E | x in A & y in B]
now use definitionsimage
andimage2
resp. - notation
f @` A
now uses the definitionimage
- the order of arguments of
image
has changed compared to version 0.3.7: it is nowimage A f
(it used to beimage f A
)
- notations
- in
sequences.v
:- lemma
iter_addr
- lemma
- file
reals.v
:- lemmas
le_floor
,le_ceil
- lemmas
- in
ereal.v
:- lemmas
big_nat_widenl
,big_geq_mkord
- lemmas
lee_sum_nneg_natr
,lee_sum_nneg_natl
- lemmas
ereal_sup_gt
,ereal_inf_lt
- notation
0
/1
for0%R%:E
/1%R:%E
inereal_scope
- lemmas
- in
classical_sets.v
- lemma
subset_bigsetU_cond
- lemma
eq_imagel
- lemma
- in
sequences.v
:- notations
\sum_(i <oo) F i
- lemmas
ereal_pseries_sum_nat
,lte_lim
- lemmas
is_cvg_ereal_nneg_natsum_cond
,is_cvg_ereal_nneg_natsum
- lemma
ereal_pseriesD
,ereal_pseries0
,eq_ereal_pseries
- lemmas
leq_fact
,prod_rev
,fact_split
- definition
exp_coeff
- lemmas
exp_coeff_ge0
,series_exp_coeff0
,is_cvg_series_exp_coeff_pos
,normed_series_exp_coeff
,is_cvg_series_exp_coeff
,cvg_exp_coeff
- definition
expR
- notations
- in
measure.v
:- lemma
eq_bigcupB_of_bigsetU
- definitions
caratheodory_type
- definition
caratheodory_measure
and lemmacaratheodory_measure_complete
- internal definitions and lemmas that may be deprecated and hidden in the future:
caratheodory_measurable
, notation... .-measurable
,le_caratheodory_measurable
,outer_measure_bigcup_lim
,caratheodory_measurable_{set0,setC,setU_le,setU,bigsetU,setI,setD}
disjoint_caratheodoryIU
,caratheodory_additive
,caratheodory_lim_lee
,caratheodory_measurable_trivIset_bigcup
,caratheodory_measurable_bigcup
- definition
measure_is_complete
- lemma
- file
csum.v
:- lemmas
ereal_pseries_pred0
,ub_ereal_sup_adherent_img
- definition
fsets
, lemmasfsets_set0
,fsets_self
,fsetsP
,fsets_img
- definition
fsets_ord
, lemmasfsets_ord_nat
,fsets_ord_subset
- definition
csum
, lemmascsum0
,csumE
,csum_ge0
,csum_fset
csum_image
,ereal_pseries_csum
,csum_bigcup
- notation
\csum_(i in S) a i
- lemmas
- file
cardinality.v
- lemmas
in_inj_comp
,enum0
,enum_recr
,eq_set0_nil
,eq_set0_fset0
,image_nat_maximum
,fset_nat_maximum
- defintion
surjective
, lemmassurjective_id
,surjective_set0
,surjective_image
,surjective_image_eq0
,surjective_comp
- definition
set_bijective
, - lemmas
inj_of_bij
,sur_of_bij
,set_bijective1
,set_bijective_image
,set_bijective_subset
,set_bijective_comp
- definition
inverse
- lemmas
injective_left_inverse
,injective_right_inverse
,surjective_right_inverse
, - notation
`I_n
- lemmas
II0
,II1
,IIn_eq0
,II_recr
- lemmas
set_bijective_D1
,pigeonhole
,Cantor_Bernstein
- definition
card_le
, notation_ #<= _
- lemmas
card_le_surj
,surj_card_le
,card_lexx
,card_le0x
,card_le_trans
,card_le0P
,card_le_II
- definition
card_eq
, notation_ #= _
- lemmas
card_eq_sym
,card_eq_trans
,card_eq00
,card_eqP
,card_eqTT
,card_eq_II
,card_eq_le
,card_eq_ge
,card_leP
- lemma
set_bijective_inverse
- definition
countable
- lemmas
countable0
,countable_injective
,countable_trans
- definition
set_finite
- lemmas
set_finiteP
,set_finite_seq
,set_finite_countable
,set_finite0
- lemma
set_finite_bijective
- lemmas
subset_set_finite
,subset_card_le
- lemmas
injective_set_finite
,injective_card_le
,set_finite_preimage
- lemmas
surjective_set_finite
,surjective_card_le
- lemmas
set_finite_diff
,card_le_diff
- lemmas
set_finite_inter_set0_union
,set_finite_inter
- lemmas
ex_in_D
, definitionsmin_of_D
,min_of_D_seq
,infsub_enum
, lemmasmin_of_D_seqE
,increasing_infsub_enum
,sorted_infsub_enum
,injective_infsub_enum
,subset_infsub_enum
,infinite_nat_subset_countable
- definition
enumeration
, lemmasenumeration_id
,enumeration_set0
. - lemma
ex_enum_notin
, definitionsmin_of
,minf_of_e_seq
,smallest_of
- definition
enum_wo_rep
, lemmasenum_wo_repE
,min_of_e_seqE
,smallest_of_e_notin_enum_wo_rep
,injective_enum_wo_rep
,surjective_enum_wo_rep
,set_bijective_enum_wo_rep
,enumration_enum_wo_rep
,countable_enumeration
- lemmas
infinite_nat
,infinite_prod_nat
,countable_prod_nat
,countably_infinite_prod_nat
- lemmas
- in
classical_sets.v
- lemma
subset_bigsetU
- notation
f @` A
defined as[set f x | x in A]
instead of usingimage
- lemma
- in
ereal.v
:- change implicits of lemma
lee_sum_nneg_ord
ereal_sup_ninfty
andereal_inf_pinfty
made equivalences- change the notation
{ereal R}
to\bar R
and attach it to the scopeereal_scope
- argument of
%:E
in%R
by default F
argument of\sum
in%E
by default
- change implicits of lemma
- in
topology.v
:- change implicits of lemma
cvg_app
- change implicits of lemma
- in
normedtype.v
:coord_continuous
generalized
- in
sequences.v
:- change implicits of lemma
is_cvg_ereal_nneg_series
- statements changed from using sum of ordinals to sum of nats
- definition
series
- lemmas
ereal_nondecreasing_series
,ereal_nneg_series_lim_ge
- lemmas
is_cvg_ereal_nneg_series_cond
,is_cvg_ereal_nneg_series
- lemmas
ereal_nneg_series_lim_ge0
,ereal_nneg_series_pinfty
- definition
- change implicits of lemma
- in
ereal.v
:er
->extended
ERFin
->EFin
ERPInf
->EPInf
ERNInf
->ENInf
real_of_er
->real_of_extended
real_of_erD
->real_of_extendedD
ERFin_real_of_er
->EFin_real_of_extended
real_of_er_expand
->real_of_extended_expand
NERFin
->NEFin
addERFin
->addEFin
sumERFin
->sumEFin
subERFin
->subEFin
- in
reals.v
:ler_ceil
->ceil_ge
Rceil_le
->le_Rceil
le_Rceil
->Rceil_ge
ge_Rfloor
->Rfloor_le
ler_floor
->floor_le
Rfloor_le
->le_Rfloor
- in
topology.v
:- lemmas
onT_can
->onS_can
,onT_can_in
->onS_can_in
,in_onT_can
-> ``in_onS_can` (now in MathComp)
- lemmas
- in
sequences,v
:is_cvg_ereal_nneg_series_cond
- in
forms.v
:symmetric
->symmetric_form
- in
classical_sets.v
- lemmas
eq_set_inl
,set_in_in
- definition
image
- lemmas
- from
topology.v
:- lemmas
homoRL_in
,homoLR_in
,homo_mono_in
,monoLR_in
,monoRL_in
,can_mono_in
,onW_can
,onW_can_in
,in_onW_can
,onT_can
,onT_can_in
,in_onT_can
(now in MathComp)
- lemmas
- in
forms.v
:- lemma
mxdirect_delta
,row_mx_eq0
,col_mx_eq0
,map_mx_comp
- lemma
- in
topology.v
:- global instance
ball_filter
- module
regular_topology
with anExports
submodule- canonicals
pointedType
,filteredType
,topologicalType
,uniformType
,pseudoMetricType
- canonicals
- module
numFieldTopology
with anExports
submodule- many canonicals and coercions
- global instance
Proper_nbhs'_regular_numFieldType
- definition
dense
and lemmadenseNE
- global instance
- in
normedtype.v
:- definitions
ball_
,pointed_of_zmodule
,filtered_of_normedZmod
- lemmas
ball_norm_center
,ball_norm_symmetric
,ball_norm_triangle
- definition
pseudoMetric_of_normedDomain
- lemma
nbhs_ball_normE
- global instances
Proper_nbhs'_numFieldType
,Proper_nbhs'_realType
- module
regular_topology
with anExports
submodule- canonicals
pseudoMetricNormedZmodType
,normedModType
.
- canonicals
- module
numFieldNormedType
with anExports
submodule- many canonicals and coercions
- exports
Export numFieldTopology.Exports
- canonical
R_regular_completeType
,R_regular_CompleteNormedModule
- definitions
- in
reals.v
:- lemmas
Rfloor_lt0
,floor_lt0
,ler_floor
,ceil_gt0
,ler_ceil
- lemmas
has_sup1
,has_inf1
- lemmas
- in
ereal.v
:- lemmas
ereal_ballN
,le_ereal_ball
,ereal_ball_ninfty_oversize
,contract_ereal_ball_pinfty
,expand_ereal_ball_pinfty
,contract_ereal_ball_fin_le
,contract_ereal_ball_fin_lt
,expand_ereal_ball_fin_lt
,ball_ereal_ball_fin_lt
,ball_ereal_ball_fin_le
,sumERFin
,ereal_inf1
,eqe_oppP
,eqe_oppLRP
,oppe_subset
,ereal_inf_pinfty
- definition
er_map
- definition
er_map
- lemmas
adde_undefC
,real_of_erD
,fin_num_add_undef
,addeK
,subeK
,subee
,sube_le0
,lee_sub
- lemmas
addeACA
,muleC
,mule1
,mul1e
,abseN
- enable notation
x \is a fin_num
- definition
fin_num
, factfin_num_key
, lemmasfin_numE
,fin_numP
- definition
- lemmas
- in
classical_sets.v
:- notation
[disjoint ... & ..]
- lemmas
mkset_nil
,bigcup_mkset
,bigcup_nonempty
,bigcup0
,bigcup0P
,subset_bigcup_r
,eqbigcup_r
,eq_set_inl
,set_in_in
- notation
- in
nngnum.v
:- instance
invr_nngnum
- instance
- in
posnum.v
:- instance
posnum_nngnum
- instance
-
in
ereal.v
:- generalize lemma
lee_sum_nneg_subfset
- lemmas
nbhs_oo_up_e1
,nbhs_oo_down_e1
,nbhs_oo_up_1e
,nbhs_oo_down_1e
nbhs_fin_out_above
,nbhs_fin_out_below
,nbhs_fin_out_above_below
nbhs_fin_inbound
- generalize lemma
-
in
sequences.v
:- generalize lemmas
ereal_nondecreasing_series
,is_cvg_ereal_nneg_series
,ereal_nneg_series_lim_ge0
,ereal_nneg_series_pinfty
- generalize lemmas
-
in
measure.v
:- generalize lemma
bigUB_of
- generalize theorem
Boole_inequality
- generalize lemma
-
in
classical_sets.v
:- change the order of arguments of
subset_trans
- change the order of arguments of
-
canonicals and coercions have been changed so that there is not need anymore for explicit types casts to
R^o
,[filteredType R^o of R^o]
,[filteredType R^o * R^o of R^o * R^o]
,[lmodType R of R^o]
,[normedModType R of R^o]
,[topologicalType of R^o]
,[pseudoMetricType R of R^o]
-
sequences.v
now importsnumFieldNormedType.Exports
-
topology.v
now importsreals
-
normedtype.v
now importsvector
,fieldext
,falgebra
,numFieldTopology.Exports
-
derive.v
now importsnumFieldNormedType.Exports
- in
ereal.v
:is_realN
->fin_numN
is_realD
->fin_numD
ereal_sup_set0
->ereal_sup0
ereal_sup_set1
->ereal_sup1
ereal_inf_set0
->ereal_inf0
- in
topology.v
:- section
numFieldType_canonical
- section
- in
normedtype.v
:- lemma
R_ball
- definition
numFieldType_pseudoMetricNormedZmodMixin
- canonical
numFieldType_pseudoMetricNormedZmodType
- global instance
Proper_nbhs'_realType
- lemma
R_normZ
- definition
numFieldType_NormedModMixin
- canonical
numFieldType_normedModType
- lemma
- in
ereal.v
:- definition
is_real
- definition
- in
boolp.v
:- lemmas
iff_notr
,iff_not2
- lemmas
- in
classical_sets.v
:- lemmas
subset_has_lbound
,subset_has_ubound
- lemma
mksetE
- definitions
cover
,partition
,pblock_index
,pblock
- lemmas
trivIsetP
,trivIset_sets
,trivIset_restr
,perm_eq_trivIset
- lemma
fdisjoint_cset
- lemmas
setDT
,set0D
,setD0
- lemmas
setC_bigcup
,setC_bigcap
- lemmas
- in
reals.v
:- lemmas
sup_setU
,inf_setU
- lemmas
RtointN
,floor_le0
- definition
Rceil
, lemmasisint_Rceil
,Rceil0
,le_Rceil
,Rceil_le
,Rceil_ge0
- definition
ceil
, lemmasRceilE
,ceil_ge0
,ceil_le0
- lemmas
- in
ereal.v
:- lemmas
esum_fset_ninfty
,esum_fset_pinfty
,esum_pinfty
- lemmas
- in
normedtype.v
:- lemmas
ereal_nbhs'_le
,ereal_nbhs'_le_finite
- lemmas
ball_open
- definition
closed_ball_
, lemmasclosed_closed_ball_
- definition
closed_ball
, lemmasclosed_ballxx
,closed_ballE
,closed_ball_closed
,closed_ball_subset
,nbhs_closedballP
,subset_closed_ball
- lemmas
nbhs0_lt
,nbhs'0_lt
,interior_closed_ballE
, open_nbhs_closed_ball` - section "LinearContinuousBounded"
- lemmas
linear_boundedP
,linear_continuous0
,linear_bounded0
,continuousfor0_continuous
,linear_bounded_continuous
,bounded_funP
- lemmas
- lemmas
- in
measure.v
:- definition
sigma_finite
- definition
- in
classical_sets.v
:- generalization and change of
trivIset
(and thus lemmastrivIset_bigUI
andtrivIset_setI
) bigcup_distrr
,bigcup_distrl
generalized
- generalization and change of
- header in
normedtype.v
, precisions onbounded_fun
- in
reals.v
:floor_ge0
generalized and renamed tofloorR_ge_int
- in
ereal.v
,ereal_scope
notation scope:x <= y
notation changed tolee (x : er _) (y : er _)
andonly printing
notationx <= y
forlee x y
- same change for
<
- change extended to notations
_ <= _ <= _
,_ < _ <= _
,_ <= _ < _
,_ < _ < _
- in
reals.v
:floor
->Rfloor
isint_floor
->isint_Rfloor
floorE
->RfloorE
mem_rg1_floor
->mem_rg1_Rfloor
floor_ler
->Rfloor_ler
floorS_gtr
->RfloorS_gtr
floor_natz
->Rfloor_natz
Rfloor
->Rfloor0
floor1
->Rfloor1
ler_floor
->ler_Rfloor
floor_le0
->Rfloor_le0
ifloor
->floor
ifloor_ge0
->floor_ge0
- in
topology.v
:ball_ler
->le_ball
- in
normedtype.v
,bounded_on
->bounded_near
- in
measure.v
:AdditiveMeasure.Measure
->AdditiveMeasure.Axioms
OuterMeasure.OuterMeasure
->OuterMeasure.Axioms
- in
topology.v
:ball_le
- in
classical_sets.v
:- lemma
bigcapCU
- lemma
- in
sequences.v
:- lemmas
ler_sum_nat
,sumr_const_nat
- lemmas
- in
classical_sets.v
:- lemmas
predeqP
,seteqP
- lemmas
- Requires:
- MathComp >= 1.12
- in
boolp.v
:- lemmas
contra_not
,contra_notT
,contra_notN
,contra_not_neq
,contraPnot
are now provided by MathComp 1.12
- lemmas
- in
normedtype.v
:- lemmas
ltr_distW
,ler_distW
are now provided by MathComp 1.12 as lemmasltr_distlC_subl
andler_distl_subl
- lemmas
maxr_real
andbigmaxr_real
are now provided by MathComp 1.12 as lemmasmax_real
andbigmax_real
- definitions
isBOpen
andisBClosed
are replaced by the definitionbound_side
- definition
Rhull
now usesBSide
instead ofBOpen_if
- lemmas
- Drop support for MathComp 1.11
- in
topology.v
:Typeclasses Opaque fmap.
- in
classical_sets.v
:- lemma
bigcup_distrl
- definition
trivIset
- lemmas
trivIset_bigUI
,trivIset_setI
- lemma
- in
ereal.v
:- definition
mule
and its notation*
(scopeereal_scope
) - definition
abse
and its notation`| |
(scopeereal_scope
)
- definition
- in
normedtype.v
:- lemmas
closure_sup
,near_infty_natSinv_lt
,limit_pointP
- lemmas
closure_gt
,closure_lt
- definition
is_interval
,is_intervalPle
,interval_is_interval
- lemma
connected_intervalP
- lemmas
interval_open
andinterval_closed
- lemmas
inf_lb_strict
,sup_ub_strict
,interval_unbounded_setT
,right_bounded_interior
,interval_left_unbounded_interior
,left_bounded_interior
,interval_right_unbounded_interior
,interval_bounded_interior
- definition
Rhull
- lemma
sub_Rhull
,is_intervalP
- lemmas
- in
measure.v
:- definition
bigcup2
, lemmabigcup2E
- definitions
isSemiRingOfSets
,SemiRingOfSets
, notationsemiRingOfSetsType
- definitions
RingOfSets_from_semiRingOfSets
,RingOfSets
, notationringOfSetsType
- factory:
isRingOfSets
- definitions
Measurable_from_ringOfSets
,Measurable
- lemma
semiRingOfSets_measurable{I,D}
- definition
diff_fsets
, lemmassemiRingOfSets_diff_fsetsE
,semiRingOfSets_diff_fsets_disjoint
- definitions
isMeasurable
- factory:
isMeasurable
- lemma
bigsetU_measurable
,measurable_bigcap
- definitions
semi_additive2
,semi_additive
,semi_sigma_additive
- lemmas
semi_additive2P
,semi_additiveE
,semi_additive2E
,semi_sigma_additive_is_additive
,semi_sigma_additiveE
Module AdditiveMeasure
- notations
additive_measure
,{additive_measure set T -> {ereal R}}
- notations
- lemmas
measure_semi_additive2
,measure_semi_additive
,measure_semi_sigma_additive
- lemma
semi_sigma_additive_is_additive
, canonical/coercionmeasure_additive_measure
- lemma
sigma_additive_is_additive
- notations
ringOfSetsType
,outer_measure
- definition
negligible
and its notation.-negligible
- lemmas
negligibleP
,negligible_set0
- definition
almost_everywhere
and its notation{ae mu, P}
- lemma
satisfied_almost_everywhere
- definition
sigma_subadditive
Module OuterMeasure
- notation
outer_measure
,{outer_measure set T -> {ereal R}}
- notation
- lemmas
outer_measure0
,outer_measure_ge0
,le_outer_measure
,outer_measure_sigma_subadditive
,le_outer_measureIC
- definition
- in
boolp.v
:- lemmas
and3_asboolP
,or3_asboolP
,not_and3P
- lemmas
- in
classical_sets.v
:- lemma
bigcup_sup
- lemma
- in
topology.v
:- lemmas
closure0
,separatedC
,separated_disjoint
,connectedP
,connected_subset
,bigcup_connected
- definition
connected_component
- lemma
component_connected
- lemmas
- in
ereal.v
:- notation
x >= y
defined asy <= x
(only parsing) instead ofgee
- notation
x > y
defined asy < x
(only parsing) instead ofgte
- definition
mkset
- lemma
eq_set
- notation
- in
classical_sets.v
:- notation
[set x : T | P]
now use definitionmkset
- notation
- in
reals.v
:- lemmas generalized from
realType
tonumDomainType
:setNK
,memNE
,lb_ubN
,ub_lbN
,nonemptyN
,has_lb_ubN
- lemmas generalized from
realType
torealDomainType
:has_ubPn
,has_lbPn
- lemmas generalized from
- in
classical_sets.v
:subset_empty
->subset_nonempty
- in
measure.v
:sigma_additive_implies_additive
->sigma_additive_is_additive
- in
topology.v
:nbhs_of
->locally_of
- in
topology.v
:connect0
->connected0
- in
boolp.v
:- lemma
not_andP
- lemma
not_exists2P
- lemma
- in
classical_sets.v
:- lemmas
setIIl
,setIIr
,setCS
,setSD
,setDS
,setDSS
,setCI
,setDUr
,setDUl
,setIDA
,setDD
- definition
dep_arrow_choiceType
- lemma
bigcup_set0
- lemmas
setUK
,setKU
,setIK
,setKI
,subsetEset
,subEset
,complEset
,botEset
,topEset
,meetEset
,joinEset
,subsetPset
,properPset
- Canonical
porderType
,latticeType
,distrLatticeType
,blatticeType
,tblatticeType
,bDistrLatticeType
,tbDistrLatticeType
,cbDistrLatticeType
,ctbDistrLatticeType
- lemmas
set0M
,setM0
,image_set0_set0
,subset_set1
,preimage_set0
- lemmas
setICr
,setUidPl
,subsets_disjoint
,disjoints_subset
,setDidPl
,setIidPl
,setIS
,setSI
,setISS
,bigcup_recl
,bigcup_distrr
,setMT
- new lemmas:
lb_set1
,ub_lb_set1
,ub_lb_refl
,lb_ub_lb
- new definitions and lemmas:
infimums
,infimum
,infimums_set1
,is_subset1_infimum
- new lemmas:
ge_supremum_Nmem
,le_infimum_Nmem
,nat_supremums_neq0
- lemmas
setUCl
,setDv
- lemmas
image_preimage_subset
,image_subset
,preimage_subset
- definition
proper
and its notation<
- lemmas
setUK
,setKU
,setIK
,setKI
- lemmas
setUK
,setKU
,setIK
,setKI
,subsetEset
,subEset
,complEset
,botEset
,topEset
,meetEset
,joinEset
,properEneq
- Canonical
porderType
,latticeType
,distrLatticeType
,blatticeType
,tblatticeType
,bDistrLatticeType
,tbDistrLatticeType
,cbDistrLatticeType
,ctbDistrLatticeType
on classicalset
.
- lemmas
- file
nngnum.v
- in
topology.v
:- definition
meets
and its notation#
- lemmas
meetsC
,meets_openr
,meets_openl
,meets_globallyl
,meets_globallyr
,meetsxx
andproper_meetsxx
. - definition
limit_point
- lemmas
subset_limit_point
,closure_limit_point
,closure_subset
,closureE
,closureC
,closure_id
- lemmas
cluster_nbhs
,clusterEonbhs
,closureEcluster
- definition
separated
- lemmas
connected0
,connectedPn
,connected_continuous_connected
- lemmas
closureEnbhs
,closureEonbhs
,limit_pointEnbhs
,limit_pointEonbhs
,closeEnbhs
,closeEonbhs
.
- definition
- in
ereal.v
:- notation
\+
(ereal_scope
) for function addition - notations
>
and>=
for comparison of extended real numbers - definition
is_real
, lemmasis_realN
,is_realD
,ERFin_real_of_er
- basic lemmas:
addooe
,adde_Neq_pinfty
,adde_Neq_ninfty
,addERFin
,subERFin
,real_of_erN
,lb_ereal_inf_adherent
- arithmetic lemmas:
oppeD
,subre_ge0
,suber_ge0
,lee_add2lE
,lte_add2lE
,lte_add
,lte_addl
,lte_le_add
,lte_subl_addl
,lee_subr_addr
,lee_subl_addr
,lte_spaddr
- lemmas
gee0P
,sume_ge0
,lee_sum_nneg
,lee_sum_nneg_ord
,lee_sum_nneg_subset
,lee_sum_nneg_subfset
- lemma
lee_addr
- lemma
lee_adde
- lemma
oppe_continuous
- lemmas
ereal_nbhs_pinfty_ge
,ereal_nbhs_ninfty_le
- notation
- in
sequences.v
:- definitions
arithmetic
,geometric
,geometric_invn
- lemmas
increasing_series
,cvg_shiftS
,mulrn_arithmetic
,exprn_geometric
,cvg_arithmetic
,cvg_expr
,geometric_seriesE
,cvg_geometric_series
,is_cvg_geometric_series
. - lemmas
ereal_cvgN
,ereal_cvg_ge0
,ereal_lim_ge
,ereal_lim_le
- lemma
ereal_cvg_real
- lemmas
is_cvg_ereal_nneg_series_cond
,is_cvg_ereal_nneg_series
,ereal_nneg_series_lim_ge0
,ereal_nneg_series_pinfty
- lemmas
ereal_cvgPpinfty
,ereal_cvgPninfty
,lee_lim
- lemma
ereal_cvgD
- with intermediate lemmas
ereal_cvgD_pinfty_fin
,ereal_cvgD_ninfty_fin
,ereal_cvgD_pinfty_pinfty
,ereal_cvgD_ninfty_ninfty
- with intermediate lemmas
- lemma
ereal_limD
- definitions
- in
normedtype.v
:- lemma
closed_ereal_le_ereal
- lemma
closed_ereal_ge_ereal
- lemmas
natmul_continuous
,cvgMn
andis_cvgMn
. uniformType
structure forereal
- lemma
- in
classical_sets.v
:- the index in
bigcup_set1
generalized fromnat
to someType
- lemma
bigcapCU
generalized - lemmas
preimage_setU
andpreimage_setI
are about thesetU
andsetI
(instead ofbigcup
andbigcap
) eqEsubset
changed from an implication to an equality
- the index in
- lemma
asboolb
moved fromdiscrete.v
toboolp.v
- lemma
exists2NP
moved fromdiscrete.v
toboolp.v
- lemma
neg_or
moved fromdiscrete.v
toboolp.v
and renamed tonot_orP
- definitions
dep_arrow_choiceClass
anddep_arrow_pointedType
slightly generalized and moved fromtopology.v
toclassical_sets.v
- the types of the topological notions for
numFieldType
have been moved fromnormedtype.v
totopology.v
- the topology of extended real numbers has been moved from
normedtype.v
toereal.v
(including the notions of filters) numdFieldType_lalgType
innormedtype.v
renamed tonumFieldType_lalgType
intopology.v
- in
ereal.v
:- the first argument of
real_of_er
is now maximal implicit - the first argument of
is_real
is now maximal implicit - generalization of
lee_sum
- the first argument of
- in
boolp.v
:- rename
exists2NP
toforall2NP
and make it bidirectionnal
- rename
- moved the definition of
{nngnum _}
and the related bigmax theory to the newnngnum.v
file
- in
classical_sets.v
:setIDl
->setIUl
setUDl
->setUIl
setUDr
->setUIr
setIDr
->setIUl
setCE
->setTD
preimage_setU
->preimage_bigcup
,preimage_setI
->preimage_bigcap
- in
boolp.v
:contrap
->contra_not
contrapL
->contraPnot
contrapR
->contra_notP
contrapLR
->contraPP
- in
boolp.v
:contrapNN
,contrapTN
,contrapNT
,contrapTT
eqNN
- in
normedtype.v
:forallN
eqNNP
existsN
- in
discrete.v
:existsP
existsNP
- in
topology.v
:close_to
close_cluster
, which is subsumed bycloseEnbhs
- in
boolp.v
, new lemmaandC
- in
topology.v
:- new lemma
open_nbhsE
uniformType
a structure for uniform spaces based on entourages (entourage
)uniformType
structure on products, matrices, function spaces- definitions
nbhs_
,topologyOfEntourageMixin
,split_ent
,nbhsP
,entourage_set
,entourage_
,uniformityOfBallMixin
,nbhs_ball
- lemmas
nbhs_E
,nbhs_entourageE
,filter_from_entourageE
,entourage_refl
,entourage_filter
,entourageT
,entourage_inv
,entourage_split_ex
,split_entP
,entourage_split_ent
,subset_split_ent
,entourage_split
,nbhs_entourage
,cvg_entourageP
,cvg_entourage
,cvg_app_entourageP
,cvg_mx_entourageP
,cvg_fct_entourageP
,entourage_E
,entourage_ballE
,entourage_from_ballE
,entourage_ball
,entourage_proper_filter
,open_nbhs_entourage
,entourage_close
completePseudoMetricType
structurecompletePseudoMetricType
structure on matrices and function spaces
- new lemma
- in
classical_sets.v
:- lemmas
setICr
,setUidPl
,subsets_disjoint
,disjoints_subset
,setDidPl
,setIidPl
,setIS
,setSI
,setISS
,bigcup_recl
,bigcup_distrr
,setMT
- lemmas
- in
ereal.v
:- notation
\+
(ereal_scope
) for function addition - notations
>
and>=
for comparison of extended real numbers - definition
is_real
, lemmasis_realN
,is_realD
,ERFin_real_of_er
,adde_undef
- basic lemmas:
addooe
,adde_Neq_pinfty
,adde_Neq_ninfty
,addERFin
,subERFin
,real_of_erN
,lb_ereal_inf_adherent
- arithmetic lemmas:
oppeD
,subre_ge0
,suber_ge0
,lee_add2lE
,lte_add2lE
,lte_add
,lte_addl
,lte_le_add
,lte_subl_addl
,lee_subr_addr
,lee_subl_addr
,lte_spaddr
,addeAC
,addeCA
- notation
- in
normedtype.v
:- lemmas
natmul_continuous
,cvgMn
andis_cvgMn
. uniformType
structure forereal
- lemmas
- in
sequences.v
:- definitions
arithmetic
,geometric
- lemmas
telescopeK
,seriesK
,increasing_series
,cvg_shiftS
,mulrn_arithmetic
,exprn_geometric
,cvg_arithmetic
,cvg_expr
,geometric_seriesE
,cvg_geometric_series
,is_cvg_geometric_series
.
- definitions
- moved from
normedtype.v
toboolp.v
and renamed:forallN
->forallNE
existsN
->existsNE
topology.v
:unif_continuous
usesentourage
pseudoMetricType
inherits fromuniformType
generic_source_filter
andset_filter_source
use entouragescauchy
is based on entourages and its former version is renamedcauchy_ball
completeType
inherits fromuniformType
and not frompseudoMetricType
- moved from
posnum.v
toRbar.v
: notationposreal
- moved from
normedtype.v
toRstruct.v
:- definitions
R_pointedType
,R_filteredType
,R_topologicalType
,R_uniformType
,R_pseudoMetricType
- lemmas
continuity_pt_nbhs
,continuity_pt_cvg
,continuity_ptE
,continuity_pt_cvg'
,continuity_pt_nbhs'
,nbhs_pt_comp
- lemmas
close_trans
,close_cvgxx
,cvg_closeP
andclose_cluster
are valid for auniformType
- moved
continuous_withinNx
fromnormedType.v
totopology.v
and generalised it touniformType
- definitions
- moved from
measure.v
tosequences.v
ereal_nondecreasing_series
ereal_nneg_series_lim_ge
(renamed fromseries_nneg
)
- in
classical_sets.v
,ub
andlb
are renamed toubound
andlbound
- new lemmas:
setUCr
,setCE
,bigcup_set1
,bigcapCU
,subset_bigsetU
- in
boolp.v
,existsPN
->not_existsP
forallPN
->not_forallP
Nimply
->not_implyP
- in
classical_sets.v
,ub
andlb
are renamed toubound
andlbound
- in
ereal.v
:eadd
->adde
,eopp
->oppe
- in
topology.v
:locally
->nbhs
locally_filterE
->nbhs_filterE
locally_nearE
->nbhs_nearE
Module Export LocallyFilter
->Module Export NbhsFilter
locally_simpl
->nbhs_simpl
- three occurrences
near_locally
->near_nbhs
Module Export NearLocally
->Module Export NearNbhs
locally_filter_onE
->nbhs_filter_onE
filter_locallyT
->filter_nbhsT
Global Instance locally_filter
->Global Instance nbhs_filter
Canonical locally_filter_on
->Canonical nbhs_filter_on
neigh
->open_nbhs
locallyE
->nbhsE
locally_singleton
->nbhs_singleton
locally_interior
->nbhs_interior
neighT
->open_nbhsT
neighI
->open_nbhsI
neigh_locally
->open_nbhs_nbhs
within_locallyW
->within_nbhsW
prod_loc_filter
->prod_nbhs_filter
prod_loc_singleton
->prod_nbhs_singleton
prod_loc_loc
->prod_nbhs_nbhs
mx_loc_filter
->mx_nbhs_filter
mx_loc_singleton
->mx_nbhs_singleton
mx_loc_loc
->mx_nbhs_nbhs
locally'
->nbhs'
locallyE'
->nbhsE'
Global Instance locally'_filter
->Global Instance nbhs'_filter
Canonical locally'_filter_on
->Canonical nbhs'_filter_on
locally_locally'
->nbhs_nbhs'
Global Instance within_locally_proper
->Global Instance within_nbhs_proper
locallyP
->nbhs_ballP
locally_ball
->nbhsx_ballx
neigh_ball
->open_nbhs_ball
mx_locally
->mx_nbhs
prod_locally
->prod_nbhs
Filtered.locally_op
->Filtered.nbhs_op
locally_of
->nbhs_of
open_of_locally
->open_of_nhbs
locally_of_open
->nbhs_of_open
locally_
->nbhs_ball
- lemma
locally_ballE
->nbhs_ballE
locallyW
->nearW
nearW
->near_skip_subproof
locally_infty_gt
->nbhs_infty_gt
locally_infty_ge
->nbhs_infty_ge
cauchy_entouragesP
->cauchy_ballP
- in
normedtype.v
:locallyN
->nbhsN
locallyC
->nbhsC
locallyC_ball
->nbhsC_ball
locally_ex
->nbhs_ex
Global Instance Proper_locally'_numFieldType
->Global Instance Proper_nbhs'_numFieldType
Global Instance Proper_locally'_realType
->Global Instance Proper_nbhs'_realType
ereal_locally'
->ereal_nbhs'
ereal_locally
->ereal_nbhs
Global Instance ereal_locally'_filter
->Global Instance ereal_nbhs'_filter
Global Instance ereal_locally_filter
->Global Instance ereal_nbhs_filter
ereal_loc_singleton
->ereal_nbhs_singleton
ereal_loc_loc
->ereal_nbhs_nbhs
locallyNe
->nbhsNe
locallyNKe
->nbhsNKe
locally_oo_up_e1
->nbhs_oo_up_e1
locally_oo_down_e1
->nbhs_oo_down_e1
locally_oo_up_1e
->nbhs_oo_up_1e
locally_oo_down_1e
->nbhs_oo_down_1e
locally_fin_out_above
->nbhs_fin_out_above
locally_fin_out_below
->nbhs_fin_out_below
locally_fin_out_above_below
->nbhs_fin_out_above_below
locally_fin_inbound
->nbhs_fin_inbound
ereal_locallyE
->ereal_nbhsE
locally_le_locally_norm
->nbhs_le_locally_norm
locally_norm_le_locally
->locally_norm_le_nbhs
locally_locally_norm
->nbhs_locally_norm
filter_from_norm_locally
->filter_from_norm_nbhs
locally_ball_norm
->nbhs_ball_norm
locally_simpl
->nbhs_simpl
Global Instance filter_locally
->Global Instance filter_locally
locally_interval
->nbhs_interval
ereal_locally'_le
->ereal_nbhs'_le
ereal_locally'_le_finite
->ereal_nbhs'_le_finite
locally_image_ERFin
->nbhs_image_ERFin
locally_open_ereal_lt
->nbhs_open_ereal_lt
locally_open_ereal_gt
->nbhs_open_ereal_gt
locally_open_ereal_pinfty
->nbhs_open_ereal_pinfty
locally_open_ereal_ninfty
->nbhs_open_ereal_ninfty
continuity_pt_locally
->continuity_pt_nbhs
continuity_pt_locally'
->continuity_pt_nbhs'
nbhs_le_locally_norm
->nbhs_le_nbhs_norm
locally_norm_le_nbhs
->nbhs_norm_le_nbhs
nbhs_locally_norm
->nbhs_nbhs_norm
locally_normP
->nbhs_normP
locally_normE
->nbhs_normE
near_locally_norm
->near_nbhs_norm
- lemma
locally_norm_ball_norm
->nbhs_norm_ball_norm
locally_norm_ball
->nbhs_norm_ball
pinfty_locally
->pinfty_nbhs
ninfty_locally
->ninfty_nbhs
- lemma
locally_pinfty_gt
->nbhs_pinfty_gt
- lemma
locally_pinfty_ge
->nbhs_pinfty_ge
- lemma
locally_pinfty_gt_real
->nbhs_pinfty_gt_real
- lemma
locally_pinfty_ge_real
->nbhs_pinfty_ge_real
locally_minfty_lt
->nbhs_minfty_lt
locally_minfty_le
->nbhs_minfty_le
locally_minfty_lt_real
->nbhs_minfty_lt_real
locally_minfty_le_real
->nbhs_minfty_le_real
lt_ereal_locally
->lt_ereal_nbhs
locally_pt_comp
->nbhs_pt_comp
- in
derive.v
:derivable_locally
->derivable_nbhs
derivable_locallyP
->derivable_nbhsP
derivable_locallyx
->derivable_nbhsx
derivable_locallyxP
->derivable_nbhsxP
- in
sequences.v
,cvg_comp_subn
->cvg_centern
,cvg_comp_addn
->cvg_shiftn
,telescoping
->telescope
sderiv1_series
->seriesSB
telescopingS0
->eq_sum_telescope
- in
topology.v
:- definitions
entourages
,topologyOfBallMixin
,ball_set
- lemmas
locally_E
,entourages_filter
,cvg_cauchy_ex
- definitions
- in
boolp.v
, lemmas for classical reasoningexistsNP
,existsPN
,forallNP
,forallPN
,Nimply
,orC
. - in
classical_sets.v
, definitions for supremums:ul
,lb
,supremum
- in
ereal.v
:- technical lemmas
lee_ninfty_eq
,lee_pinfty_eq
,lte_subl_addr
,eqe_oppLR
- lemmas about supremum:
ereal_supremums_neq0
- definitions:
ereal_sup
,ereal_inf
- lemmas about
ereal_sup
:ereal_sup_ub
,ub_ereal_sup
,ub_ereal_sup_adherent
- technical lemmas
- in
normedtype.v
:- function
contract
(bijection from{ereal R}
toR
) - function
expand
(that cancelscontract
) ereal_pseudoMetricType R
- function
- in
reals.v
,pred
replaced byset
fromclassical_sets.v
- change propagated in many files
This release is compatible with MathComp version 1.11+beta1.
The biggest change of this release is compatibility with MathComp 1.11+beta1. The latter introduces in particular ordered types. All norms and absolute values have been unified, both in their denotation `|_| and in their theory.
sequences.v
: Main theorems about sequences and series, and examples- Definitions:
[sequence E]_n
is a special notation forfun n => E
series u_
is the sequence of partial sums[normed S]
is the series of absolute values, if S is a seriesharmonic
is the name of a sequence, applyseries
to them to get the series.
- Theorems:
- lots of helper lemmas to prove convergence of sequences
- convergence of harmonic sequence
- convergence of a series implies convergence of a sequence
- absolute convergence implies convergence of series
- Definitions:
- in
ereal.v
: lemmas about extended reals' arithmetic - in
normedtype.v
: Definitions and lemmas about generic domination, boundedness, and lipschitz- See header for the notations and their localization
- Added a bunch of combinators to extract existential witnesses
- Added
filter_forall
(commutation between a filter and finite forall)
- about extended reals:
- equip extended reals with a structure of topological space
- show that extended reals are hausdorff
- in
topology.v
, predicateclose
- lemmas about bigmaxr and argmaxr
\big[max/x]_P F = F [arg max_P F]
- similar lemma for
bigmin
- lemmas for
within
- add
setICl
(intersection of set with its complement) prodnormedzmodule.v
ProdNormedZmodule
transfered from MathCompnonneg
type for non-negative numbers
bigmaxr
/bigminr
library- Lemmas
interiorI
,setCU
(complement of union is intersection of complements),setICl
,nonsubset
,setC0
,setCK
,setCT
,preimage_setI/U
, lemmas aboutimage
- in
Rstruct.v
,bigmaxr
is now defined usingbigop
inE
now supportsin_setE
andin_fsetE
- fix the definition of
le_ereal
,lt_ereal
- various generalizations to better use the hierarchy of
ssrnum
(numDomainType
,numFieldType
,realDomainType
, etc. when possible) intopology.v
,normedtype.v
,derive.v
, etc.
- renaming
flim
tocvg
cvg
corresponds to_ --> _
lim
corresponds tolim _
continuous
corresponds to continuity- some suffixes
_opp
,_add
... renamed toN
,D
, ...
- big refactoring about naming conventions
- complete the theory of
cvg_
,is_cvg_
andlim_
in normedtype.v with consistent naming schemes - fixed differential of
inv
which was defined on1 / x
instead ofx^-1
- two versions of lemmas on inverse exist
- one in realType (
Rinv_
lemmas), for which we have differential - a general one
numFieldType
(inv_
lemmas in normedtype.v, no differential so far, just continuity)
- one in realType (
- renamed
cvg_norm
tocvg_dist
to reuse the namecvg_norm
for convergence under the norm
- complete the theory of
Uniform
renamed toPseudoMetric
- rename
is_prop
tois_subset1
sub_trans
(replaced by MathComp'ssubrKA
)derive.v
does not requireReals
anymoreRbar.v
is almost not used anymore
- NIX support
- see
config.nix
,default.nix
- for the CI also
- see