-
Notifications
You must be signed in to change notification settings - Fork 8
/
train.py
442 lines (393 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import argparse
import os
import mlflow
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
from matplotlib import pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from mlflow import log_metric, log_param, get_artifact_uri
from skimage.io import imsave
from sklearn.model_selection import ParameterGrid
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset import TomoDetectionDataset as Dataset
from dense_yolo import DenseYOLO
from loss import objectness_module, LocalizationLoss
from sampler import TomoBatchSampler
from transform import transforms
def main(args):
torch.backends.cudnn.benchmark = True
device = torch.device("cpu" if not torch.cuda.is_available() else args.device)
loader_train, loader_valid = data_loaders(args)
loaders = {"train": loader_train, "valid": loader_valid}
hparams_dict = {
"block_config": [(1, 3, 2, 6, 4), (2, 6, 4, 12, 8)],
"num_init_features": [8, 16],
"growth_rate": [8, 16],
"bn_size": [2, 4],
}
hparams = list(ParameterGrid(hparams_dict)) # 16 configs
loss_params_dict = [
{"loss": ["CE", "weighted-CE"], "alpha": [0.25, 0.5, 1.0]}, # 6 configs
{"loss": ["focal"], "alpha": [0.25, 0.5, 1.0], "gamma": [0.5, 1.0, 2.0]}, # 9 configs
{
"loss": ["reduced-focal"],
"alpha": [0.25, 0.5, 1.0],
"gamma": [0.5, 1.0, 2.0],
"reduce_th": [0.5],
} # 9 configs
] # 24 configs
loss_params = list(ParameterGrid(loss_params_dict))
loss_params = loss_params * 2 # 48 configs
try:
mlflow.set_tracking_uri(args.mlruns_path)
experiment_id = (
args.experiment_id
if args.experiment_id
else mlflow.create_experiment(name=args.experiment_name)
)
except Exception as _:
print("experiment-id must be unique")
return
for i, loss_param in tqdm(enumerate(loss_params)):
for j, hparam in enumerate(hparams):
with mlflow.start_run(experiment_id=experiment_id):
mlflow_log_params(loss_param, hparam)
try:
yolo = DenseYOLO(img_channels=1, out_channels=Dataset.out_channels, **hparam)
yolo.to(device)
objectness_loss = objectness_module(
name=loss_param["loss"], args=argparse.Namespace(**loss_param)
)
localization_loss = LocalizationLoss(weight=args.loc_weight)
optimizer = optim.Adam(yolo.parameters(), lr=args.lr)
early_stop = args.patience
run_tpr2 = 0.0
run_tpr1 = 0.0
run_auc = 0.0
for _ in range(args.epochs):
if early_stop == 0:
break
for phase in ["train", "valid"]:
if phase == "train":
yolo.train()
early_stop -= 1
else:
yolo.eval()
df_validation_pred = pd.DataFrame()
valid_target_nb = 0
for data in loaders[phase]:
x, y_true = data
x, y_true = x.to(device), y_true.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == "train"):
y_pred = yolo(x)
obj = objectness_loss(y_pred, y_true)
loc = localization_loss(y_pred, y_true)
total_loss = obj + loc
if phase == "train":
total_loss.backward()
clip_grad_norm_(yolo.parameters(), 0.5)
optimizer.step()
else:
y_true_np = y_true.detach().cpu().numpy()
valid_target_nb += np.sum(y_true_np[:, 0])
df_batch_pred = evaluate_batch(y_pred, y_true)
df_validation_pred = df_validation_pred.append(
df_batch_pred, ignore_index=True, sort=False
)
if phase == "valid":
tpr, fps = froc(df_validation_pred, valid_target_nb)
epoch_tpr2 = np.interp(2.0, fps, tpr)
epoch_tpr1 = np.interp(1.0, fps, tpr)
if epoch_tpr2 > run_tpr2:
early_stop = args.patience
run_tpr2 = epoch_tpr2
run_tpr1 = epoch_tpr1
run_auc = np.trapz(tpr, fps)
torch.save(
yolo.state_dict(),
os.path.join(get_artifact_uri(), "yolo.pt"),
)
imsave(
os.path.join(get_artifact_uri(), "froc.png"),
plot_froc(fps, tpr),
)
log_metric("TPR2", run_tpr2)
log_metric("TPR1", run_tpr1)
log_metric("AUC", run_auc)
except Exception as e:
print(
"{:0>2d}/{} | {} {}".format(
j + 1, len(hparams), hparams[j], type(e).__name__
)
)
def mlflow_log_params(loss_param, hparam):
for key in loss_param:
log_param(key, loss_param[key])
log_param("loss_fun", str(loss_param))
for key in hparam:
log_param(key, hparam[key])
log_param("network", str(hparam))
def data_loaders(args):
dataset_train, dataset_valid = datasets(args)
sampler_train = TomoBatchSampler(
batch_size=args.batch_size, data_frame=dataset_train.data_frame
)
def worker_init(worker_id):
np.random.seed(42 + worker_id)
loader_train = DataLoader(
dataset_train,
batch_sampler=sampler_train,
num_workers=args.workers,
worker_init_fn=worker_init,
)
loader_valid = DataLoader(
dataset_valid,
batch_size=args.batch_size,
drop_last=False,
num_workers=args.workers,
worker_init_fn=worker_init,
)
return loader_train, loader_valid
def datasets(args):
train = Dataset(
csv_views=args.data_views,
csv_bboxes=args.data_boxes,
root_dir=args.images,
subset="train",
random=True,
only_biopsied=args.only_biopsied,
transform=transforms(train=True),
skip_preprocessing=True,
downscale=args.downscale,
max_slice_offset=args.slice_offset,
seed=args.seed,
)
valid = Dataset(
csv_views=args.data_views,
csv_bboxes=args.data_boxes,
root_dir=args.images,
subset="validation",
random=False,
transform=transforms(train=False),
skip_preprocessing=True,
downscale=args.downscale,
max_slice_offset=args.slice_offset,
seed=args.seed,
)
return train, valid
def froc(df, targets_nb):
total_slices = len(df.drop_duplicates(subset=["PID"]))
total_tps = targets_nb
tpr = [0.0]
fps = [0.0]
max_fps = 4.0
thresholds = sorted(df[df["TP"] == 1]["Score"], reverse=True)
for th in thresholds:
df_th = df[df["Score"] >= th]
df_th_unique_tp = df_th.drop_duplicates(subset=["PID", "TP", "GTID"])
num_tps_th = float(sum(df_th_unique_tp["TP"]))
tpr_th = num_tps_th / total_tps
num_fps_th = float(len(df_th[df_th["TP"] == 0]))
fps_th = num_fps_th / total_slices
if fps_th > max_fps:
tpr.append(tpr[-1])
fps.append(max_fps)
break
tpr.append(tpr_th)
fps.append(fps_th)
if np.max(fps) < max_fps:
tpr.append(tpr[-1])
fps.append(max_fps)
return tpr, fps
def plot_froc(fps, tpr, color="darkorange", linestyle="-"):
fig = plt.figure(figsize=(10, 8))
canvas = FigureCanvasAgg(fig)
plt.plot(fps, tpr, color=color, linestyle=linestyle, lw=2)
plt.xlim([0.0, 4.0])
plt.xticks(np.arange(0.0, 4.5, 0.5))
plt.ylim([0.0, 1.0])
plt.yticks(np.arange(0.0, 1.1, 0.1))
plt.tick_params(axis="both", which="major", labelsize=16)
plt.xlabel("Mean FPs per slice", fontsize=24)
plt.ylabel("Sensitivity", fontsize=24)
plt.grid(color="silver", alpha=0.3, linestyle="--", linewidth=1)
plt.tight_layout()
canvas.draw()
plt.close()
s, (width, height) = canvas.print_to_buffer()
return np.fromstring(s, np.uint8).reshape((height, width, 4))
def is_tp(pred_box, true_box, min_dist=50):
# box: center point + dimensions
pred_y, pred_x = pred_box["Y"], pred_box["X"]
gt_y, gt_x = true_box["Y"], true_box["X"]
# distance between GT and predicted center points
dist = np.sqrt((pred_x - gt_x) ** 2 + (pred_y - gt_y) ** 2)
# TP radius based on GT box size
dist_threshold = np.sqrt(true_box["Width"] ** 2 + true_box["Height"] ** 2) / 2.
dist_threshold = max(dist_threshold, min_dist)
# TP if predicted center within GT radius
return dist <= dist_threshold
def evaluate_batch(y_pred, y_true):
y_pred = y_pred.detach().cpu().numpy()
y_true = y_true.detach().cpu().numpy()
df_eval = pd.DataFrame()
for i in range(y_pred.shape[0]):
df_gt_boxes = pred2boxes(y_true[i], threshold=1.0)
df_gt_boxes["GTID"] = np.random.randint(10e10) * (1 + df_gt_boxes["X"])
df_pred_boxes = pred2boxes(y_pred[i])
df_pred_boxes["PID"] = np.random.randint(10e12)
df_pred_boxes["TP"] = 0
df_pred_boxes["GTID"] = np.random.choice(
list(set(df_gt_boxes["GTID"])), df_pred_boxes.shape[0]
)
for index, pred_box in df_pred_boxes.iterrows():
tp_list = [
(j, is_tp(pred_box, x_box)) for j, x_box in df_gt_boxes.iterrows()
]
if any([tp[1] for tp in tp_list]):
tp_index = [tp[0] for tp in tp_list if tp[1]][0]
df_pred_boxes.at[index, "TP"] = 1
df_pred_boxes.at[index, "GTID"] = df_gt_boxes.at[tp_index, "GTID"]
df_eval = df_eval.append(df_pred_boxes, ignore_index=True, sort=False)
return df_eval
def pred2boxes(pred, threshold=None):
# box: center point + dimensions
anchor = Dataset.anchor
cell_size = Dataset.cell_size
np.nan_to_num(pred, copy=False)
obj_th = pred[0]
if threshold is None:
threshold = min(0.001, np.max(obj_th) * 0.5)
obj_th[obj_th < threshold] = 0
yy, xx = np.nonzero(obj_th)
scores = []
xs = []
ys = []
ws = []
hs = []
for i in range(len(yy)):
scores.append(pred[0, yy[i], xx[i]])
h = int(anchor[0] * pred[3, yy[i], xx[i]] ** 2)
hs.append(h)
w = int(anchor[1] * pred[4, yy[i], xx[i]] ** 2)
ws.append(w)
y_offset = pred[1, yy[i], xx[i]]
y_mid = yy[i] * cell_size + (cell_size / 2) + (cell_size / 2) * y_offset
ys.append(int(y_mid))
x_offset = pred[2, yy[i], xx[i]]
x_mid = xx[i] * cell_size + (cell_size / 2) + (cell_size / 2) * x_offset
xs.append(int(x_mid))
df_dict = {"Score": scores, "X": xs, "Y": ys, "Width": ws, "Height": hs}
df_boxes = pd.DataFrame(df_dict)
df_boxes.sort_values(by="Score", ascending=False, inplace=True)
return df_boxes
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Hyper-parameters grid search for YOLO model for cancer detection in Duke DBT volumes"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="input batch size for training (default: 16)",
)
parser.add_argument(
"--epochs",
type=int,
default=100,
help="number of epochs to train (default: 100)",
)
parser.add_argument(
"--patience",
type=int,
default=25,
help="early stopping: number of epochs to wait for improvement (default: 25)",
)
parser.add_argument(
"--lr", type=float, default=0.001, help="initial learning rate (default: 0.001)"
)
parser.add_argument(
"--loc-weight",
type=float,
default=0.5,
help="weight of localization loss (default: 0.5)",
)
parser.add_argument(
"--device",
type=str,
default="cuda:1",
help="device for training (default: cuda:1)",
)
parser.add_argument(
"--workers",
type=int,
default=4,
help="number of workers for data loading (default: 4)",
)
parser.add_argument(
"--data-views",
type=str,
default="/data/data_train_v2.csv",
help="csv file listing training views together with category label",
)
parser.add_argument(
"--data-boxes",
type=str,
default="/data/bboxes_v2.csv",
help="csv file defining ground truth bounding boxes",
)
parser.add_argument(
"--images",
type=str,
default="/data/TomoImagesPP/",
help="root folder with preprocessed images",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="random seed for validation split (default: 42)",
)
parser.add_argument(
"--downscale",
type=int,
default=2,
help="input image downscale factor (default 2)",
)
parser.add_argument(
"--experiment-name",
type=str,
default="0",
help="experiment name for new mlflow (default: 0)",
)
parser.add_argument(
"--experiment-id",
type=str,
default=None,
help="experiment id to restore in-progress mlflow experiment (default: None)",
)
parser.add_argument(
"--mlruns-path",
type=str,
default="/data/mlruns",
help="path for mlflow results (default: /data/mlruns)",
)
parser.add_argument(
"--slice-offset",
type=int,
default=0,
help="maximum offset from central slice to consider as GT bounding box (default: 0)",
)
parser.add_argument(
"--only-biopsied",
default=True, # set to true by default for convenience
action="store_true",
help="flag to use only biopsied cases",
)
args = parser.parse_args()
main(args)