forked from AskNowQA/SQG
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
214 lines (158 loc) · 6.13 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import json
import argparse
import os
# from query_gen import get_question_index
from parser.lc_quad_linked import LC_Qaud_Linked
# Import pairwise2 module
from Bio import pairwise2
# Import format_alignment method
from Bio.pairwise2 import format_alignment
import re
def load_file(name):
with open("output/{}.json".format(name)) as data_file:
return json.load(data_file)
# takes the query_gen output file format not the analysis_deep format
def basic_stats(data):
correct = incorrect = no_path = no_answer = 0
for i in data:
if i['answer'] == "correct":
correct +=1
elif i['answer'] == "-incorrect":
incorrect +=1
elif i['answer'] == "-without_path":
no_path +=1
elif i['answer'] == "-no_answer":
no_answer +=1
print "-- Basic Stats --"
print "- Total Questions: %d" % (correct+incorrect+no_path+no_answer)
print "- Correct: %d" % correct
print "- Incorrect: %d" % incorrect
print "- No-Path: %d" % no_path
print "- No-Answer: %d" % no_answer
precision = (correct*100)/float(correct+incorrect)
recall = (correct*100)/float(correct+no_path+no_answer)
f1 = (2*precision*recall)/float(precision+recall)
print "- Precision: %.2f" % precision
print "- Recall: %.2f" % recall
print "- F1: %.2f" % f1
# Get incorrect data and saves them in a json file externally
def deep_analysis(data):
l = []
for i in data:
if i["answer"] == "-incorrect":
l.append(i)
with open("output/incorrect_bonn.json", "w") as data_file:
json.dump(l, data_file, sort_keys=True, indent=4, separators=(',', ': '))
# print i
# for k,e in i.iteritems():
# print k, e
# if k == "Answer_Generated" or k == "Answer_Gold":
# print k
# for z in e:
# # print e
# print str(z).encode('ascii', 'ignore')
# else:
# print k
# print e
# print ""
# Searched for a character in the data
# dummy method
def deep_analysis_search(data):
c = 0
for i in data:
if i["Result"] == True and '-' in i["Query_Generated"]:
c+=1
print i["Query_Generated"]
print c
# Input Question output index in the dataset
def get_question_index(question):
ds = LC_Qaud_Linked("./data/LC-QUAD/linked_answer6.json")
ds.load()
ds.parse()
for i in range(0,len(ds.qapairs)):
if question == ds.qapairs[i].question.text:
print "Question id:" ,i
return i
# Input question list, out put query gen
def get_question_query(questions):
s = ""
for q in questions:
id = get_question_index(q)
s+=(" %s" % id)
os.system("python query_gen.py --in %s" % s)
# Compares two queries
def compare_query(q1, q2):
# Find a list of the variables in the queries
vars1 = re.findall(r"\?\w+",q1)
vars2 = re.findall(r"\?\w+",q2)
vars1s = []
vars2s = []
for i, j in zip(vars1,vars2):
if i not in vars1s:
vars1s.append(i)
if j not in vars2s:
vars2s.append(j)
# If no. of variables are not the same return false
if len(vars1s) != len(vars2s):
print "Step 1"
return False
q1n = q1
q2n = q2
idx = 0
while idx < len(vars1) and idx < len(vars2):
q1n = q1n.replace(vars1[idx],"?VAR_{}".format(idx))
q2n = q2n.replace(vars2[idx],"?VAR_{}".format(idx))
idx+=1
q1n_no_space = q1n.replace(" ","").replace(".}","}")
q2n_no_space = q2n.replace(" ","").replace(".}","}")
# if initial queries are the same true. spaces and . at the end are removes
if q1n_no_space == q2n_no_space:
print "Step 2"
return True
q1_predicates = re.search(r'{.*}', q1n_no_space).group(0)
q2_predicates = re.search(r'{.*}', q2n_no_space).group(0)
q1_predicates = re.sub(r"(http://www.w3.org/)|(http://dbpedia.org/)|{|}","",q1_predicates).split('.')
q2_predicates = re.sub(r"(http://www.w3.org/)|(http://dbpedia.org/)|{|}", "", q2_predicates).split('.')
# if queries are the same but predicates are in the wrong order, return true.
# q2 has to be the gold query
print q1_predicates
print q2_predicates
for i in q2_predicates:
if i not in q1_predicates:
print "lalal"
return False
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate SPARQL query')
parser.add_argument("--file", help="file name to save the results", default="tmp", dest="file_name")
args = parser.parse_args()
file = args.file_name
# ds = load_file("incorrect_bonn")
# print len(ds)
# basic_stats(ds)
# ds = load_file(file)
# deep_analysis(ds)
# print get_question_index("What is the major shrine of Jacques-Dsir Laval ?")
# get_question_query(["What is the major shrine of Jacques-Dsir Laval ?"])
# deep_analysis_search(ds)
# os.system("python query_gen.py --max 2")
# get_question_query(["List the primeministers of Victor Hope, 2nd Marquess of Linlithgow ?"])
# print compare_query("a","a
# X
# Y = ""
# x = ds[2]["Query_Generated"]
# y = ds[2]["Query_Gold"]
# c = 0
# for i in ds:
# print compare_query(i["Query_Generated"], i["Query_Gold"])
# c+=1
# print compare_query(x,y)
# print c
# s = json.load(open("output/analysis_out.json"))
# print s
# print compare_query(s[0]["Query_Generated"],s[0]["Query_Gold"])
"""
q1 = " SELECT DISTINCT ?u_0 WHERE { <http://dbpedia.org/resource/The_Sarah_Jane_Adventures> <http://dbpedia.org/ontology/related> ?u_0 .<http://dbpedia.org/resource/Doctor_Who_Confidential> <http://dbpedia.org/ontology/related> ?u_0 }"
q2 = "SELECT DISTINCT ?uri WHERE { ?uri <http://dbpedia.org/ontology/related> <http://dbpedia.org/resource/The_Sarah_Jane_Adventures> . ?uri <http://dbpedia.org/ontology/related> <http://dbpedia.org/resource/Doctor_Who_Confidential> . }"
print compare_query(q1,q2)
"""