forked from rdguez-mariano/sift-aid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAID-train-model.py
411 lines (334 loc) · 17.4 KB
/
AID-train-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
MODEL_NAME = 'AID_simCos_BigDesc_dropout'
DegMax = 60
Debug = True
Parallel = False
ConstrastSimu = True # if True it randomly simulates contrast changes for each patch
DoBigEpochs = True
batch_number = 32
N_epochs = 5000
steps_epoch=100
NeededData = batch_number * N_epochs * steps_epoch + 1
SHOW_TB_weights = False # Show Net-weights info in TensorBoard
if MODEL_NAME[0:10]=="AID_simCos":
TripleLoss = True
NORM = 'hinge'
else:
TripleLoss = False
NORM = 'cross-entropy'
# When default GPU is being used... prepare to use a second one
# import os
# os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"]="0"
from library import *
from acc_test_library import *
import numpy as np
import time
import random
import cv2
def ProcessData(GA, stacked_patches, groundtruth_pts):
if ConstrastSimu:
channels = np.int32(np.shape(stacked_patches)[2]/2)
val1 = random.uniform(1/3, 3)
val2 = random.uniform(1/3, 3)
for i in range(channels):
stacked_patches[:,:,i] = np.power(stacked_patches[:,:,i],val1)
stacked_patches[:,:,channels+i] = np.power(stacked_patches[:,:,channels+i],val2)
return stacked_patches, groundtruth_pts #if ConstrastSimu==False -> Identity
GAval = GenAffine("./imgs-val/", save_path = "./db-gen-val-"+str(DegMax)+"/", DoBigEpochs = DoBigEpochs, tmax = DegMax)
GAtrain = GenAffine("./imgs-train/", save_path = "./db-gen-train-"+str(DegMax)+"/", DoBigEpochs = DoBigEpochs, tmax = DegMax)
Set_FirstThreadTouch(GAval,False)
Set_FirstThreadTouch(GAtrain,False)
stacked_patches, groundtruth_pts = GAtrain.gen_affine_patches()
stacked_patches, groundtruth_pts = ProcessData(GAtrain, stacked_patches, groundtruth_pts)
def affine_generator(GA, batch_num=32, Force2Gen=False, ForceFast=False):
P_list = []
GT_list = []
FastThread = False
t2sleep = 2*random.random()
time.sleep(t2sleep)
assert Force2Gen==False or ForceFast==False
if ForceFast:
FastThread = True
if Force2Gen==False and Check_FirstThreadTouch(GA)==False:
print("Fast Thread Created ! Needs "+str(NeededData)+" generated data")
Set_FirstThreadTouch(GA,True)
FastThread = True
while True:
if FastThread and ForceFast==False:
GA.ScatteredGenData_2_BlockData() # it will be really done every 30 minutes
stacked_patches, groundtruth_pts = [], []
if FastThread and Force2Gen==False:
stacked_patches, groundtruth_pts = GA.Fast_gen_affine_patches()
else:
stacked_patches, groundtruth_pts = GA.gen_affine_patches()
stacked_patches, groundtruth_pts = ProcessData(GA, stacked_patches, groundtruth_pts)
Pa = stacked_patches[:,:,0]
Pp = stacked_patches[:,:,1]
if FastThread and Force2Gen==False:
stacked_patches, groundtruth_pts = GA.Fast_gen_affine_patches()
else:
stacked_patches, groundtruth_pts = GA.gen_affine_patches()
stacked_patches, groundtruth_pts = ProcessData(GA, stacked_patches, groundtruth_pts)
Pn = stacked_patches[:,:,0]
vgg_input_shape = np.shape(Pa)
vgg_output_shape = np.shape([1])
bPshape = tuple([batch_num]) + tuple(vgg_input_shape) + tuple([1])
bGTshape = tuple([batch_num]) + tuple(vgg_output_shape)
bP1 = np.zeros(shape=bPshape)
bP2 = np.zeros(shape=bPshape)
bP3 = np.zeros(shape=bPshape)
bGT = np.zeros(shape=bGTshape, dtype = np.float32)
if NORM=='hinge':
bP1[0,:,:,0] = Pa
bP2[0,:,:,0] = Pp
bP3[0,:,:,0] = Pn
else:
bP1[0,:,:,0] = Pa
bP2[0,:,:,0] = Pp
bGT[0,0] = 1.0
for i in range(1,batch_num):
if FastThread and Force2Gen==False:
stacked_patches, groundtruth_pts = GA.Fast_gen_affine_patches()
else:
stacked_patches, groundtruth_pts = GA.gen_affine_patches()
stacked_patches, groundtruth_pts = ProcessData(GA, stacked_patches, groundtruth_pts)
Pa = stacked_patches[:,:,0]
Pp = stacked_patches[:,:,1]
if FastThread and Force2Gen==False:
stacked_patches, groundtruth_pts = GA.Fast_gen_affine_patches()
else:
stacked_patches, groundtruth_pts = GA.gen_affine_patches()
stacked_patches, groundtruth_pts = ProcessData(GA, stacked_patches, groundtruth_pts)
Pn = stacked_patches[:,:,0]
if NORM=='hinge':
bP1[i,:,:,0] = Pa
bP2[i,:,:,0] = Pp
bP3[i,:,:,0] = Pn
else:
if random.randint(0,1)>0.5:
bP1[i,:,:,0] = Pa
bP2[i,:,:,0] = Pp
bGT[i,0] = 1.0
else:
bP1[i,:,:,0] = Pa
bP2[i,:,:,0] = Pn
bGT[i,0] = 0.0
# print('These numbers should not repeat in other lines: '+ str(bP[0,0,0,0])+" "+str(bP[-1,0,0,0]))
# print('Gen batch: '+str(np.shape(bP))+', '+str(np.shape(bGT)))
if NORM=='hinge':
yield [bP1, bP2, bP3], None
else:
yield [bP1, bP2, bGT], None
# VGG like network
from keras import layers
from keras.models import Model
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto(allow_soft_placement=True)
#, device_count = {'CPU' : 1, 'GPU' : 1})
config.gpu_options.per_process_gpu_memory_fraction = 0.1
set_session(tf.Session(config=config))
from models import *
vgg_input_shape = np.shape(stacked_patches)[0:2] + tuple([1])
train_model, sim_type = create_model(vgg_input_shape, None, model_name = MODEL_NAME, Norm=NORM, resume = False)
# ---> TRAIN NETWORK
import math
import scipy.special
import random
from sklearn.manifold import TSNE, MDS
from sklearn.metrics import f1_score, accuracy_score
from keras.callbacks import TerminateOnNaN, ModelCheckpoint, TensorBoard, LambdaCallback, ReduceLROnPlateau
import os
from shutil import copyfile
import matplotlib.pyplot as plt
plt.switch_backend('agg')
#modified from http://seoulai.com/2018/02/06/keras-and-tensorboard.html
class TensorboardKeras(object):
def __init__(self, model, log_dir, GAval, GAtrain, static_val_num=500):
self.model = model
self.log_dir = log_dir
self.session = K.get_session()
self.lastloss = float('nan')
self.lastvalloss = float('nan')
self.GAval = GAval
self.GAtrain = GAtrain
self.static_val_num = static_val_num
self.acc_data_Pa = []
self.acc_data_Pp = []
self.acc_data_names = []
self.lastacc = 0
self.TKid = random.randint(0,1000)
self.P1_pos, self.P2_pos, self.P1_neg, self.P2_neg = [], [], [], []
self.acc_TP_ph = tf.placeholder(shape=(), dtype=tf.float32)
tf.summary.scalar('accuracy/TruePositives', self.acc_TP_ph)
self.acc_TN_ph = tf.placeholder(shape=(), dtype=tf.float32)
tf.summary.scalar('accuracy/TrueNegatives', self.acc_TN_ph)
self.lr_ph = tf.placeholder(shape=(), dtype=tf.float32)
tf.summary.scalar('Learning_rate', self.lr_ph)
self.big_epoch = tf.placeholder(shape=(), dtype=tf.float32)
tf.summary.scalar('Big_Epoch', self.big_epoch)
self.val_loss_ph = tf.placeholder(shape=(), dtype=tf.float32)
tf.summary.scalar('losses/validation', self.val_loss_ph)
self.train_loss_ph = tf.placeholder(dtype=tf.float32)
tf.summary.scalar('losses/training', self.train_loss_ph)
# self.sift = cv2.xfeatures2d.SIFT_create( nfeatures = siftparams.nfeatures,
# nOctaveLayers = siftparams.nOctaveLayers, contrastThreshold = siftparams.contrastThreshold,
# edgeThreshold = siftparams.edgeThreshold, sigma = siftparams.sigma)
self.global_acc_holder = tf.placeholder(dtype=tf.float32)
tf.summary.scalar('accuracy/_GLOBAL_', self.global_acc_holder)
self.acc_test_holder = []
for file in glob.glob('./acc-test/*.txt'):
self.acc_data_names.append( os.path.basename(file)[:-4] )
i = len(self.acc_data_names) - 1
pathway = './acc-test/' + self.acc_data_names[i]
asift_KPlist1, patches1, GT_Avec_list, asift_KPlist2, patches2 = load_acc_test_data(pathway)
Pa = np.zeros(shape=tuple([len(patches1)])+tuple(np.shape(patches1)[1:])+tuple([1]),dtype=np.float32)
Pp = np.zeros(shape=tuple([len(patches1)])+tuple(np.shape(patches1)[1:])+tuple([1]),dtype=np.float32)
for k in range(0,len(patches1)):
Pa[k,:,:,0] = patches1[k][:,:]/self.GAval.imgdivfactor
Pp[k,:,:,0] = patches2[k][:,:]/self.GAval.imgdivfactor
self.acc_data_Pa.append( Pa )
self.acc_data_Pp.append( Pp )
self.acc_test_holder.append(tf.placeholder(dtype=tf.float32))
tf.summary.scalar('accuracy/'+self.acc_data_names[i], self.acc_test_holder[i])
if SHOW_TB_weights:
l = np.shape(self.model.get_layer("aff_desc").get_weights())[0]
self.weightsholder = []
for i in range(0,l):
self.weightsholder.append(tf.placeholder(dtype=tf.float32))
self.variable_summaries(self.weightsholder[i], 'weights/'+repr(i).zfill(3)+'-layer')
self.merged = tf.summary.merge_all()
self.writer = tf.summary.FileWriter(self.log_dir)
copyfile(os.path.realpath(__file__), self.log_dir+"/"+os.path.basename(__file__))
def variable_summaries(self,var,name):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope(name):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
def _get_lr(self):
return K.eval(self.model.optimizer.lr)
def _get_weights(self,wpos):
return self.model.get_layer("aff_desc").get_weights()[wpos]
def on_epoch_end(self, epoch, logs):
self.lastloss = np.ravel(logs['loss'])[0]
self.lastvalloss = np.ravel(logs['val_loss'])[0]
def on_epoch_begin(self, epoch, logs):
for d in affine_generator(self.GAval, batch_num=self.static_val_num, ForceFast=True):
if TripleLoss: #
self.P1_pos = d[0][0]
self.P2_pos = d[0][1]
self.P1_neg = d[0][0]
self.P2_neg = d[0][2]
else:
lpos, lneg = 0, 0
for i in range(0,len(d[0][2])):
if d[0][2][i]>0.5:
lpos +=1
else:
lneg +=1
self.P1_pos = np.zeros(shape=tuple([lpos])+tuple(np.shape(d[0][0])[1:]), dtype=np.float32)
self.P2_pos = np.zeros(shape=tuple([lpos])+tuple(np.shape(d[0][0])[1:]), dtype=np.float32)
self.P1_neg = np.zeros(shape=tuple([lneg])+tuple(np.shape(d[0][0])[1:]), dtype=np.float32)
self.P2_neg = np.zeros(shape=tuple([lneg])+tuple(np.shape(d[0][0])[1:]), dtype=np.float32)
i_p, i_n = 0, 0
for i in range(0,len(d[0][2])):
if d[0][2][i]>0.5:
self.P1_pos[i_p,:,:,:] = d[0][0][i,:,:,:]
self.P2_pos[i_p,:,:,:] = d[0][1][i,:,:,:]
i_p += 1
else:
self.P1_neg[i_n,:,:,:] = d[0][0][i,:,:,:]
self.P2_neg[i_n,:,:,:] = d[0][1][i,:,:,:]
i_n += 1
break
emb_1_pos = self.model.get_layer("aff_desc").predict(self.P1_pos)
emb_2_pos = self.model.get_layer("aff_desc").predict(self.P2_pos)
emb_1_neg = self.model.get_layer("aff_desc").predict(self.P1_neg)
emb_2_neg = self.model.get_layer("aff_desc").predict(self.P2_neg)
if sim_type=='inlist':
acc_pos = np.sum( self.model.get_layer("sim").predict([emb_1_pos, emb_2_pos]) )/np.shape(emb_1_pos)[0]
acc_neg = np.sum( 1 - self.model.get_layer("sim").predict([emb_1_neg,emb_2_neg]) )/np.shape(emb_1_neg)[0]
elif sim_type=='diff':
acc_pos = np.sum( self.model.get_layer("sim").predict([emb_1_pos-emb_2_pos]) )/np.shape(emb_1_pos)[0]
acc_neg = np.sum( 1 - self.model.get_layer("sim").predict([emb_1_neg-emb_2_neg]) )/np.shape(emb_1_neg)[0]
elif sim_type=='concat':
acc_pos = np.sum( self.model.get_layer("sim").predict(np.concatenate((emb_1_pos,emb_2_pos),axis=-1)) )/np.shape(emb_1_pos)[0]
acc_neg = np.sum( 1 - self.model.get_layer("sim").predict(np.concatenate((emb_1_neg,emb_2_neg),axis=-1)) )/np.shape(emb_1_neg)[0]
my_dict = {
self.lr_ph: self._get_lr(),
self.acc_TP_ph: acc_pos,
self.acc_TN_ph: acc_neg,
self.val_loss_ph: self.lastvalloss,
self.big_epoch: get_big_epoch_number(self.GAtrain),
self.train_loss_ph: self.lastloss,
}
if SHOW_TB_weights:
l = np.shape(self.model.get_layer("aff_desc").get_weights())[0]
for i in range(0,l):
my_dict.update({self.weightsholder[i]: self._get_weights(i)})
RealAccPos = []
acc = 0.0
for i in range(0,len(self.acc_data_Pa)):
emb_1 = self.model.get_layer("aff_desc").predict(self.acc_data_Pa[i])
emb_2 = self.model.get_layer("aff_desc").predict(self.acc_data_Pp[i])
if sim_type=='inlist':
acc = np.sum( self.model.get_layer("sim").predict([emb_1,emb_2]) )/np.shape(self.acc_data_Pa[i])[0]
elif sim_type=='diff':
acc = np.sum( self.model.get_layer("sim").predict([emb_1-emb_2]) )/np.shape(self.acc_data_Pa[i])[0]
RealAccPos.append( acc )
my_dict.update({self.acc_test_holder[i]: acc})
thisacc = np.mean(np.array(RealAccPos))
if (acc_pos+acc_neg) > self.lastacc:
self.lastacc = acc_pos+acc_neg
self.model.save(self.log_dir+"/model.ckpt.max_acc.hdf5")
my_dict.update({self.global_acc_holder: thisacc})
summary = self.session.run(self.merged,
feed_dict=my_dict)
self.writer.add_summary(summary, epoch)
self.writer.flush()
def on_epoch_end_cb(self):
return LambdaCallback(on_epoch_end=lambda epoch, logs:
self.on_epoch_end(epoch, logs))
from datetime import datetime
ts = datetime.now().strftime("%d-%m-%Y_%H:%M:%S")
log_path = "./summaries/" + MODEL_NAME + "_" + NORM + "_-_" + str(DegMax) + "deg_-_" + ts
tensorboard = TensorBoard(log_dir=log_path,
write_graph=True, #This eats a lot of space. Enable with caution!
#histogram_freq = 1,
write_images=True,
batch_size = 1,
write_grads=True)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=25, verbose=1, mode='auto', cooldown=0, min_lr=0)
import keras
train_model.compile(loss=None, optimizer=keras.optimizers.Adam(lr=0.00001))
# loss_model_saver = ModelCheckpoint(log_path + "/model.ckpt.min_loss.{epoch:04d}-{loss:.6f}.hdf5", monitor='loss', period=1, save_best_only=True)
loss_model_saver = ModelCheckpoint(log_path + "/model.ckpt.min_loss.hdf5", monitor='loss', mode='min', period=1, save_best_only=True)
val_model_saver = ModelCheckpoint(log_path + "/model.ckpt.min_val_loss.hdf5", monitor='val_loss', mode='min', period=1, save_best_only=True)
#load_metadata_from_facescrub('facescrub_db')
tboardkeras = TensorboardKeras(model=train_model, log_dir=log_path, GAval = GAval, GAtrain = GAtrain)
#on_epoch_begin or on_epoch_end
miscallbacks = [LambdaCallback(on_epoch_begin=lambda epoch, logs: tboardkeras.on_epoch_begin(epoch, logs),
on_epoch_end=lambda epoch, logs: tboardkeras.on_epoch_end(epoch, logs)),
tensorboard, TerminateOnNaN(), val_model_saver, loss_model_saver]#, reduce_lr]
Set_FirstThreadTouch(GAval,False)
Set_FirstThreadTouch(GAtrain,False)
if Debug:
train_model.fit_generator(generator=affine_generator(GA=GAtrain,batch_num=2,ForceFast=True),
validation_data=affine_generator(GA=GAval,batch_num=2,ForceFast=True), validation_steps=1,
epochs=3, steps_per_epoch=2, callbacks = miscallbacks)
else:
if Parallel:
train_model.fit_generator(generator=affine_generator(GA=GAtrain,batch_num=batch_number,Force2Gen=True),
validation_data=affine_generator(GA=GAval,batch_num=batch_number,Force2Gen=True), validation_steps=steps_epoch,
epochs=N_epochs, steps_per_epoch=steps_epoch, callbacks = miscallbacks,
max_queue_size=10,
workers=8, use_multiprocessing=True)
else:
train_model.fit_generator(generator=affine_generator(GA=GAtrain,batch_num=batch_number,ForceFast=True),
validation_data=affine_generator(GA=GAval,batch_num=batch_number,ForceFast=True), validation_steps=np.int32(steps_epoch/2),
epochs=N_epochs, steps_per_epoch=steps_epoch, callbacks = miscallbacks)