forked from trallnag/prometheus-fastapi-instrumentator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
820 lines (696 loc) · 29.1 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
"""
This module contains ready-to-use functions that can be passed on to the
instrumentator instance with the `add()` method. The idea behind this is to
make the types of metrics you want to export with the instrumentation easily
customizable. The default instrumentation function `default` can also be found
here.
If your requirements are really specific or very extensive it makes sense to
create your own instrumentation function instead of combining several functions
from this module.
"""
from typing import Callable, List, Optional, Sequence, Tuple, Union
from prometheus_client import REGISTRY, CollectorRegistry, Counter, Histogram, Summary
from starlette.requests import Request
from starlette.responses import Response
# ------------------------------------------------------------------------------
class Info:
def __init__(
self,
request: Request,
response: Optional[Response],
method: str,
modified_handler: str,
modified_status: str,
modified_duration: float,
custom_labels: dict,
modified_duration_without_streaming: float = 0.0,
):
"""Creates Info object that is used for instrumentation functions.
This is the only argument that is passed to the instrumentation functions.
Args:
request (Request): Python Requests request object.
response (Response or None): Python Requests response object.
method (str): Unmodified method of the request.
modified_handler (str): Handler representation after processing by
instrumentator. For example grouped to `none` if not templated.
modified_status (str): Status code representation after processing
by instrumentator. For example grouping into `2xx`, `3xx` and so on.
modified_duration (float): Latency representation after processing
by instrumentator. For example rounding of decimals. Seconds.
modified_duration_without_streaming (float): Latency between request arrival and response starts (i.e. first chunk duration).
Excluding the streaming duration. Defaults to 0.
"""
self.request = request
self.response = response
self.method = method
self.modified_handler = modified_handler
self.modified_status = modified_status
self.modified_duration = modified_duration
for key, value in custom_labels.items():
setattr(self, key, value)
self.modified_duration_without_streaming = modified_duration_without_streaming
def _build_label_attribute_names(
should_include_handler: bool,
should_include_method: bool,
should_include_status: bool,
) -> Tuple[List[str], List[str]]:
"""Builds up tuple with to be used label and attribute names.
Args:
should_include_handler (bool): Should the `handler` label be part of the metric?
should_include_method (bool): Should the `method` label be part of the metric?
should_include_status (bool): Should the `status` label be part of the metric?
Returns:
Tuple with two list elements.
First element: List with all labels to be used.
Second element: List with all attribute names to be used from the
`Info` object. Done like this to enable dynamic on / off of labels.
"""
label_names = []
info_attribute_names = []
if should_include_handler:
label_names.append("handler")
info_attribute_names.append("modified_handler")
if should_include_method:
label_names.append("method")
info_attribute_names.append("method")
if should_include_status:
label_names.append("status")
info_attribute_names.append("modified_status")
return label_names, info_attribute_names
def _is_duplicated_time_series(error: ValueError) -> bool:
return any(
map(
error.args[0].__contains__,
[
"Duplicated timeseries in CollectorRegistry:",
"Duplicated time series in CollectorRegistry:",
],
)
)
# ------------------------------------------------------------------------------
# Instrumentation / Metrics functions
def latency(
metric_name: str = "http_request_duration_seconds",
metric_doc: str = "Duration of HTTP requests in seconds",
metric_namespace: str = "",
metric_subsystem: str = "",
should_include_handler: bool = True,
should_include_method: bool = True,
should_include_status: bool = True,
custom_labels: dict = {},
should_exclude_streaming_duration: bool = False,
buckets: Sequence[Union[float, str]] = Histogram.DEFAULT_BUCKETS,
registry: CollectorRegistry = REGISTRY,
) -> Optional[Callable[[Info], None]]:
"""Default metric for the Prometheus Starlette Instrumentator.
Args:
metric_name (str, optional): Name of the metric to be created. Must be
unique. Defaults to "http_request_duration_seconds".
metric_doc (str, optional): Documentation of the metric. Defaults to
"Duration of HTTP requests in seconds".
metric_namespace (str, optional): Namespace of all metrics in this
metric function. Defaults to "".
metric_subsystem (str, optional): Subsystem of all metrics in this
metric function. Defaults to "".
should_include_handler: Should the `handler` label be part of the
metric? Defaults to `True`.
should_include_method: Should the `method` label be part of the
metric? Defaults to `True`.
should_include_status: Should the `status` label be part of the
metric? Defaults to `True`.
should_exclude_streaming_duration: Should the streaming duration be
excluded? Defaults to `False`.
buckets: Buckets for the histogram. Defaults to Prometheus default.
Defaults to default buckets from Prometheus client library.
Returns:
Function that takes a single parameter `Info`.
"""
if buckets[-1] != float("inf"):
buckets = [*buckets, float("inf")]
label_names, info_attribute_names = _build_label_attribute_names(
should_include_handler, should_include_method, should_include_status
)
for key in custom_labels:
label_names.append(key)
info_attribute_names.append(key)
# Starlette will call app.build_middleware_stack() with every new middleware
# added, which will call all this again, which will make the registry
# complain about duplicated metrics.
#
# The Python Prometheus client currently doesn't seem to have a way to
# verify if adding a metric will cause errors or not, so the only way to
# handle it seems to be with this try block.
try:
if label_names:
METRIC = Histogram(
metric_name,
metric_doc,
labelnames=label_names,
buckets=buckets,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
else:
METRIC = Histogram(
metric_name,
metric_doc,
buckets=buckets,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
def instrumentation(info: Info) -> None:
duration = info.modified_duration
if should_exclude_streaming_duration:
duration = info.modified_duration_without_streaming
else:
duration = info.modified_duration
if label_names:
label_values = [
getattr(info, attribute_name)
for attribute_name in info_attribute_names
]
METRIC.labels(*label_values).observe(duration)
else:
METRIC.observe(duration)
return instrumentation
except ValueError as e:
if not _is_duplicated_time_series(e):
raise e
return None
def request_size(
metric_name: str = "http_request_size_bytes",
metric_doc: str = "Content bytes of requests.",
metric_namespace: str = "",
metric_subsystem: str = "",
should_include_handler: bool = True,
should_include_method: bool = True,
should_include_status: bool = True,
custom_labels: dict = {},
registry: CollectorRegistry = REGISTRY,
) -> Optional[Callable[[Info], None]]:
"""Record the content length of incoming requests.
If content length is missing 0 will be assumed.
Args:
metric_name (str, optional): Name of the metric to be created. Must be
unique. Defaults to "http_request_size_bytes".
metric_doc (str, optional): Documentation of the metric. Defaults to
"Content bytes of requests.".
metric_namespace (str, optional): Namespace of all metrics in this
metric function. Defaults to "".
metric_subsystem (str, optional): Subsystem of all metrics in this
metric function. Defaults to "".
should_include_handler: Should the `handler` label be part of the
metric? Defaults to `True`.
should_include_method: Should the `method` label be part of the
metric? Defaults to `True`.
should_include_status: Should the `status` label be part of the metric?
Defaults to `True`.
Returns:
Function that takes a single parameter `Info`.
"""
label_names, info_attribute_names = _build_label_attribute_names(
should_include_handler, should_include_method, should_include_status
)
for key in custom_labels:
label_names.append(key)
info_attribute_names.append(key)
# Starlette will call app.build_middleware_stack() with every new middleware
# added, which will call all this again, which will make the registry
# complain about duplicated metrics.
#
# The Python Prometheus client currently doesn't seem to have a way to
# verify if adding a metric will cause errors or not, so the only way to
# handle it seems to be with this try block.
try:
if label_names:
METRIC = Summary(
metric_name,
metric_doc,
labelnames=label_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
else:
METRIC = Summary(
metric_name,
metric_doc,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
def instrumentation(info: Info) -> None:
content_length = info.request.headers.get("Content-Length", 0)
if label_names:
label_values = [
getattr(info, attribute_name)
for attribute_name in info_attribute_names
]
METRIC.labels(*label_values).observe(int(content_length))
else:
METRIC.observe(int(content_length))
return instrumentation
except ValueError as e:
if not _is_duplicated_time_series(e):
raise e
return None
def response_size(
metric_name: str = "http_response_size_bytes",
metric_doc: str = "Content bytes of responses.",
metric_namespace: str = "",
metric_subsystem: str = "",
should_include_handler: bool = True,
should_include_method: bool = True,
should_include_status: bool = True,
custom_labels: dict = {},
registry: CollectorRegistry = REGISTRY,
) -> Optional[Callable[[Info], None]]:
"""Record the content length of outgoing responses.
If content length is missing 0 will be assumed.
Args:
metric_name (str, optional): Name of the metric to be created. Must be
unique. Defaults to "http_response_size_bytes".
metric_doc (str, optional): Documentation of the metric. Defaults to
"Content bytes of responses.".
metric_namespace (str, optional): Namespace of all metrics in this
metric function. Defaults to "".
metric_subsystem (str, optional): Subsystem of all metrics in this
metric function. Defaults to "".
should_include_handler: Should the `handler` label be part of the
metric? Defaults to `True`.
should_include_method: Should the `method` label be part of the metric?
Defaults to `True`.
should_include_status: Should the `status` label be part of the metric?
Defaults to `True`.
Returns:
Function that takes a single parameter `Info`.
"""
label_names, info_attribute_names = _build_label_attribute_names(
should_include_handler, should_include_method, should_include_status
)
for key in custom_labels:
label_names.append(key)
info_attribute_names.append(key)
# Starlette will call app.build_middleware_stack() with every new middleware
# added, which will call all this again, which will make the registry
# complain about duplicated metrics.
#
# The Python Prometheus client currently doesn't seem to have a way to
# verify if adding a metric will cause errors or not, so the only way to
# handle it seems to be with this try block.
try:
if label_names:
METRIC = Summary(
metric_name,
metric_doc,
labelnames=label_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
else:
METRIC = Summary(
metric_name,
metric_doc,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
def instrumentation(info: Info) -> None:
if info.response and hasattr(info.response, "headers"):
content_length = info.response.headers.get("Content-Length", 0)
else:
content_length = 0
if label_names:
label_values = [
getattr(info, attribute_name)
for attribute_name in info_attribute_names
]
METRIC.labels(*label_values).observe(int(content_length))
else:
METRIC.observe(int(content_length))
return instrumentation
except ValueError as e:
if not _is_duplicated_time_series(e):
raise e
return None
def combined_size(
metric_name: str = "http_combined_size_bytes",
metric_doc: str = "Content bytes of requests and responses.",
metric_namespace: str = "",
metric_subsystem: str = "",
should_include_handler: bool = True,
should_include_method: bool = True,
should_include_status: bool = True,
custom_labels: dict = {},
registry: CollectorRegistry = REGISTRY,
) -> Optional[Callable[[Info], None]]:
"""Record the combined content length of requests and responses.
If content length is missing 0 will be assumed.
Args:
metric_name (str, optional): Name of the metric to be created. Must be
unique. Defaults to "http_combined_size_bytes".
metric_doc (str, optional): Documentation of the metric. Defaults to
"Content bytes of requests and responses.".
metric_namespace (str, optional): Namespace of all metrics in this
metric function. Defaults to "".
metric_subsystem (str, optional): Subsystem of all metrics in this
metric function. Defaults to "".
should_include_handler: Should the `handler` label be part of the
metric? Defaults to `True`.
should_include_method: Should the `method` label be part of the metric?
Defaults to `True`.
should_include_status: Should the `status` label be part of the metric?
Defaults to `True`.
Returns:
Function that takes a single parameter `Info`.
"""
label_names, info_attribute_names = _build_label_attribute_names(
should_include_handler, should_include_method, should_include_status
)
for key in custom_labels:
label_names.append(key)
info_attribute_names.append(key)
# Starlette will call app.build_middleware_stack() with every new middleware
# added, which will call all this again, which will make the registry
# complain about duplicated metrics.
#
# The Python Prometheus client currently doesn't seem to have a way to
# verify if adding a metric will cause errors or not, so the only way to
# handle it seems to be with this try block.
try:
if label_names:
METRIC = Summary(
metric_name,
metric_doc,
labelnames=label_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
else:
METRIC = Summary(
metric_name,
metric_doc,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
def instrumentation(info: Info) -> None:
request_cl = info.request.headers.get("Content-Length", 0)
if info.response and hasattr(info.response, "headers"):
response_cl = info.response.headers.get("Content-Length", 0)
else:
response_cl = 0
content_length = int(request_cl) + int(response_cl)
if label_names:
label_values = [
getattr(info, attribute_name)
for attribute_name in info_attribute_names
]
METRIC.labels(*label_values).observe(int(content_length))
else:
METRIC.observe(int(content_length))
return instrumentation
except ValueError as e:
if not _is_duplicated_time_series(e):
raise e
return None
def requests(
metric_name: str = "http_requests_total",
metric_doc: str = "Total number of requests by method, status and handler.",
metric_namespace: str = "",
metric_subsystem: str = "",
should_include_handler: bool = True,
should_include_method: bool = True,
should_include_status: bool = True,
custom_labels: dict = {},
registry: CollectorRegistry = REGISTRY,
) -> Optional[Callable[[Info], None]]:
"""Record the number of requests.
Args:
metric_name (str, optional): Name of the metric to be created. Must
be unique. Defaults to "http_requests_total".
metric_doc (str, optional): Documentation of the metric. Defaults to
"Total number of requests by method, status and handler.".
metric_namespace (str, optional): Namespace of all metrics in this
metric function. Defaults to "".
metric_subsystem (str, optional): Subsystem of all metrics in this
metric function. Defaults to "".
should_include_handler (bool, optional): Should the `handler` label
be part of the metric? Defaults to `True`.
should_include_method (bool, optional): Should the `method` label be
part of the metric? Defaults to `True`.
should_include_status (bool, optional): Should the `status` label be
part of the metric? Defaults to `True`.
Returns:
Function that takes a single parameter `Info`.
"""
label_names, info_attribute_names = _build_label_attribute_names(
should_include_handler, should_include_method, should_include_status
)
for key in custom_labels:
label_names.append(key)
info_attribute_names.append(key)
# Starlette will call app.build_middleware_stack() with every new middleware
# added, which will call all this again, which will make the registry
# complain about duplicated metrics.
#
# The Python Prometheus client currently doesn't seem to have a way to
# verify if adding a metric will cause errors or not, so the only way to
# handle it seems to be with this try block.
try:
if label_names:
METRIC = Counter(
metric_name,
metric_doc,
labelnames=label_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
else:
METRIC = Counter(
metric_name,
metric_doc,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
def instrumentation(info: Info) -> None:
if label_names:
label_values = [
getattr(info, attribute_name)
for attribute_name in info_attribute_names
]
METRIC.labels(*label_values).inc()
else:
METRIC.inc()
return instrumentation
except ValueError as e:
if not _is_duplicated_time_series(e):
raise e
return None
def _map_label_name_value(label_name):
atrribute_names = []
mapping = {
"handler": "modified_handler",
"status": "modified_status",
"duration": "modified_duration",
}
for item in label_name:
if item in mapping:
atrribute_names.append(mapping[item])
else:
atrribute_names.append(item)
return atrribute_names
def default(
metric_namespace: str = "",
metric_subsystem: str = "",
should_only_respect_2xx_for_highr: bool = False,
should_exclude_streaming_duration: bool = False,
latency_highr_buckets: Sequence[Union[float, str]] = (
0.01,
0.025,
0.05,
0.075,
0.1,
0.25,
0.5,
0.75,
1,
1.5,
2,
2.5,
3,
3.5,
4,
4.5,
5,
7.5,
10,
30,
60,
),
latency_lowr_buckets: Sequence[Union[float, str]] = (0.1, 0.5, 1),
custom_labels: dict = {},
registry: CollectorRegistry = REGISTRY,
) -> Optional[Callable[[Info], None]]:
"""Contains multiple metrics to cover multiple things.
Combines several metrics into a single function. Also more efficient than
multiple separate instrumentation functions that do more or less the same.
You get the following:
* `http_requests_total` (`handler`, `status`, `method`): Total number of
requests by handler, status and method.
* `http_request_size_bytes` (`handler`): Total number of incoming
content length bytes by handler.
* `http_response_size_bytes` (`handler`): Total number of outgoing
content length bytes by handler.
* `http_request_duration_highr_seconds` (no labels): High number of buckets
leading to more accurate calculation of percentiles.
* `http_request_duration_seconds` (`handler`, `method`):
Kepp the bucket count very low. Only put in SLIs.
Args:
metric_namespace (str, optional): Namespace of all metrics in this
metric function. Defaults to "".
metric_subsystem (str, optional): Subsystem of all metrics in this
metric function. Defaults to "".
should_only_respect_2xx_for_highr (str, optional): Should the metric
`http_request_duration_highr_seconds` only include latencies of
requests / responses that have a status code starting with `2`?
Defaults to `False`.
should_exclude_streaming_duration: Should the streaming duration be
excluded? Defaults to `False`.
latency_highr_buckets (tuple[float], optional): Buckets tuple for high
res histogram. Can be large because no labels are used. Defaults to
(0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5, 7.5, 10, 30, 60).
latency_lowr_buckets (tuple[float], optional): Buckets tuple for low
res histogram. Should be very small as all possible labels are
included. Defaults to `(0.1, 0.5, 1)`.
Returns:
Function that takes a single parameter `Info`.
"""
if latency_highr_buckets[-1] != float("inf"):
latency_highr_buckets = [*latency_highr_buckets, float("inf")]
if latency_lowr_buckets[-1] != float("inf"):
latency_lowr_buckets = [*latency_lowr_buckets, float("inf")]
# Starlette will call app.build_middleware_stack() with every new middleware
# added, which will call all this again, which will make the registry
# complain about duplicated metrics.
#
# The Python Prometheus client currently doesn't seem to have a way to
# verify if adding a metric will cause errors or not, so the only way to
# handle it seems to be with this try block.
additional_label_names = tuple([key for key in custom_labels])
try:
total_label_names = (
"method",
"status",
"handler",
) + additional_label_names
TOTAL = Counter(
name="http_requests_total",
documentation="Total number of requests by method, status and handler.",
labelnames=total_label_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
in_size_names = ("handler",) + additional_label_names
IN_SIZE = Summary(
name="http_request_size_bytes",
documentation=(
"Content length of incoming requests by handler. "
"Only value of header is respected. Otherwise ignored. "
"No percentile calculated. "
),
labelnames=in_size_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
out_size_names = ("handler",) + additional_label_names
OUT_SIZE = Summary(
name="http_response_size_bytes",
documentation=(
"Content length of outgoing responses by handler. "
"Only value of header is respected. Otherwise ignored. "
"No percentile calculated. "
),
labelnames=out_size_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
LATENCY_HIGHR = Histogram(
name="http_request_duration_highr_seconds",
documentation=(
"Latency with many buckets but no API specific labels. "
"Made for more accurate percentile calculations. "
),
buckets=latency_highr_buckets,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
latency_lower_names = (
"method",
"handler",
) + additional_label_names
LATENCY_LOWR = Histogram(
name="http_request_duration_seconds",
documentation=(
"Latency with only few buckets by handler. "
"Made to be only used if aggregation by handler is important. "
),
buckets=latency_lowr_buckets,
labelnames=latency_lower_names,
namespace=metric_namespace,
subsystem=metric_subsystem,
registry=registry,
)
def instrumentation(info: Info) -> None:
duration = info.modified_duration
if should_exclude_streaming_duration:
duration = info.modified_duration_without_streaming
else:
duration = info.modified_duration
label_values = [
getattr(info, attribute_name)
for attribute_name in _map_label_name_value(total_label_names)
]
TOTAL.labels(*label_values).inc()
label_values = [
getattr(info, attribute_name)
for attribute_name in _map_label_name_value(in_size_names)
]
IN_SIZE.labels(*label_values).observe(
int(info.request.headers.get("Content-Length", 0))
)
label_values = [
getattr(info, attribute_name)
for attribute_name in _map_label_name_value(out_size_names)
]
if info.response and hasattr(info.response, "headers"):
OUT_SIZE.labels(*label_values).observe(
int(info.response.headers.get("Content-Length", 0))
)
else:
OUT_SIZE.labels(*label_values).observe(0)
if not should_only_respect_2xx_for_highr or info.modified_status.startswith(
"2"
):
LATENCY_HIGHR.observe(duration)
label_values = [
getattr(info, attribute_name)
for attribute_name in _map_label_name_value(latency_lower_names)
]
LATENCY_LOWR.labels(*label_values).observe(duration)
return instrumentation
except ValueError as e:
if not _is_duplicated_time_series(e):
raise e
return None