-
Notifications
You must be signed in to change notification settings - Fork 2
/
LatencyTuning.py
216 lines (188 loc) · 7.4 KB
/
LatencyTuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from PGUtils import PGRunner
from sqlSample import sqlInfo
import numpy as np
from itertools import count
from math import log
import random
import time
from DQN import DQN,ENV
from TreeLSTM import SPINN
from JOBParser import DB
import copy
import torch
from torch.nn import init
from ImportantConfig import Config
config = Config()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(config.schemaFile, "r") as f:
createSchema = "".join(f.readlines())
db_info = DB(createSchema)
featureSize = 128
policy_net = SPINN(n_classes = 1, size = featureSize, n_words = 50,mask_size= len(db_info)*len(db_info),device=device).to(device)
target_net = SPINN(n_classes = 1, size = featureSize, n_words = 50,mask_size= len(db_info)*len(db_info),device=device).to(device)
policy_net.load_state_dict(torch.load("CostTraining.pth"))
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
pgrunner = PGRunner(config.dbName,config.userName,config.password,config.ip,config.port,isCostTraining=False,latencyRecord = True,latencyRecordFile = "Latency.json")
DQN = DQN(policy_net,target_net,db_info,pgrunner,device)
def k_fold(input_list,k,ix = 0):
li = len(input_list)
kl = (li-1)//k + 1
train = []
validate = []
for idx in range(li):
if idx%k == ix:
validate.append(input_list[idx])
else:
train.append(input_list[idx])
return train,validate
def QueryLoader(QueryDir):
def file_name(file_dir):
import os
L = []
for root, dirs, files in os.walk(file_dir):
for file in files:
if os.path.splitext(file)[1] == '.sql':
L.append(os.path.join(root, file))
return L
files = file_name(QueryDir)
sql_list = []
for filename in files:
with open(filename, "r") as f:
data = f.readlines()
one_sql = "".join(data)
sql_list.append(sqlInfo(pgrunner,one_sql,filename))
return sql_list
def resample_sql(sql_list):
rewards = []
reward_sum = 0
rewardsP = []
mes = 0
for sql in sql_list:
# sql = val_list[i_episode%len(train_list)]
pg_cost = sql.getDPlantecy()
# continue
env = ENV(sql,db_info,pgrunner,device)
for t in count():
action_list, chosen_action,all_action = DQN.select_action(env,need_random=False)
left = chosen_action[0]
right = chosen_action[1]
env.takeAction(left,right)
reward, done = env.reward()
if done:
mrc = max(np.exp(reward*log(1.5))/pg_cost-1,0)
rewardsP.append(np.exp(reward*log(1.5)-log(pg_cost)))
mes += reward*log(1.5)-log(pg_cost)
rewards.append((mrc,sql))
reward_sum += mrc
break
import random
print(rewardsP)
res_sql = []
print(mes/len(sql_list))
for idx in range(len(sql_list)):
rd = random.random()*reward_sum
for ts in range(len(sql_list)):
rd -= rewards[ts][0]
if rd<0:
res_sql.append(rewards[ts][1])
break
return res_sql+sql_list
def train(trainSet,validateSet):
trainSet_temp = trainSet
losses = []
mean_losses=[]
startTime = time.time()
print_every = 20
TARGET_UPDATE = 3
MRC=[]
GMRL=[]
mean_rel_cost=[]
geom_rel_cost=[]
for i_episode in range(0,10000):
if i_episode % 200 == 100:
trainSet = resample_sql(trainSet_temp)
# sql = random.sample(train_list_back,1)[0][0]
sqlt = random.sample(trainSet[0:],1)[0]
pg_cost = sqlt.getDPlantecy()
print("pgcost",pg_cost)
env = ENV(sqlt,db_info,pgrunner,device)
previous_state_list = []
action_this_epi = []
nr = True
nr = random.random()>0.3 or sqlt.getBestOrder()==None
acBest = (not nr) and random.random()>0.7
for t in count():
# beginTime = time.time();
action_list, chosen_action,all_action = DQN.select_action(env,need_random=nr)
value_now = env.selectValue(policy_net)
next_value = torch.min(action_list).detach()
# e1Time = time.time()
env_now = copy.copy(env)
# endTime = time.time()
# print("make",endTime-startTime,endTime-e1Time)
if acBest:
chosen_action = sqlt.getBestOrder()[t]
left = chosen_action[0]
right = chosen_action[1]
env.takeAction(left,right)
action_this_epi.append((left,right))
reward, done = env.reward()
reward = torch.tensor([reward], device=device, dtype = torch.float32).view(-1,1)
previous_state_list.append((value_now,next_value.view(-1,1),env_now))
if done:
# print("done")
next_value = 0
sqlt.updateBestOrder(reward.item(),action_this_epi)
expected_state_action_values = (next_value ) + reward.detach()
final_state_value = (next_value ) + reward.detach()
if done:
cnt = 0
# for idx in range(t-cnt+1):
global tree_lstm_memory
tree_lstm_memory = {}
DQN.Memory.push(env,expected_state_action_values,final_state_value)
for pair_s_v in previous_state_list[:0:-1]:
cnt += 1
if expected_state_action_values > pair_s_v[1]:
expected_state_action_values = pair_s_v[1]
# for idx in range(cnt):
expected_state_action_values = expected_state_action_values
DQN.Memory.push(pair_s_v[2],expected_state_action_values,final_state_value)
# break
loss = 0
if done:
# break
loss = DQN.optimize_model()
loss = DQN.optimize_model()
loss = DQN.optimize_model()
loss = DQN.optimize_model()
losses.append(loss)
if ((i_episode + 1)%print_every==0):
mean_rel_cost.append(sum(MRC)/len(MRC))
print("MRC",sum(MRC)/len(MRC))
geom_rel_cost.append(np.exp(sum(GMRL)/len(GMRL)))
print("GMRL",np.exp(sum(GMRL))/len(GMRL))
MRC=[]
GMRL=[]
print("mean losses",np.mean(losses))
mean_losses.append(np.mean(losses))
print("######################Epoch",i_episode//print_every,pg_cost)
val_value = DQN.validate(validateSet)
print("time",time.time()-startTime)
print("~~~~~~~~~~~~~~")
break
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
mrc=np.exp(reward.item()*log(1.5)-log(pg_cost))
gmrl=reward.item()*log(1.5)-log(pg_cost)
MRC.append(mrc)
GMRL.append(gmrl)
torch.save(policy_net.cpu().state_dict(), 'LatencyTuning.pth')
if __name__=='__main__':
sytheticQueries = QueryLoader(QueryDir=config.sytheticDir)
# print(sytheticQueries)
JOBQueries = QueryLoader(QueryDir=config.JOBDir)
Q4,Q1 = k_fold(JOBQueries,10,1)
# print(Q4,Q1)
train(Q4+sytheticQueries,Q1)