forked from cmrg-lab/dATP_multiscale_modeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
myocyte_model.m
280 lines (232 loc) · 10.3 KB
/
myocyte_model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
%%%% Main code to run myocyte model
% Adapted by Abby Teitgen based on code from:
% Tewari, S. G., Bugenhagen, S. M., Palmer, B. M, Beard,
% D. A. (2016). Dynamics of corss-bridge cycling, ATP hydrolysis, force
% generation, and deformation in cardiac muscle. J. Mol. Cell Cardiol. 96:
% 11-25.
% Tewari,S. G., Bugenhagen, S. M., Vinnakota, K. C., Rice, J. J., Janssen,
% M. L., Beard, D. A. (2016). Influence of metabolic dysfuntion on cardiac
% mechanics in decompensated hypertrophy and heart failure. J. Mol.
% Cell Cardiol. 94: 162-175.
% Lopez, R. Marzban, B., Gao, X. Lauinger, E., Van den Bergh, F.,
% Whitesall, S. E., Converso-Baran, K., Burant, C. F., Michele, D. E.,
% Beard, D. A. (2020). Impaired myocardial energetics causes mechanical dysfunction
% in decompensated failing hearts. Function, 1(2): zqaa018
% Marzban, B., Lopez, R., Beard, D. A. (2020). Computational modeling of coupled
% energetics and mechanics in the rat ventricular myocardium. Physiome.
% Note: code requires parallel computing toolbox for use of parallel for
% loops (alternatively, this can be removed and normal for loops can be
% used)
function [T_final_XB, force_final, idx_XB, Shortening_final, SS_Ftotal_fpca] = myocyte_model(Ca_value, XB, dATP_percent, kf_i, k_f_i, kw_i, k_w_i, kp_i, k_p_i, kg_i, krecruit_i, k_on_i, k_off_i, k_coop_i, a_i, b_i, c_i)
%% Flags
% Calcium
Ca_flag = Ca_value; % 0 = ATP, 1 = dATP
% Protocol
XB_protocol = XB; % 0 = force pCa, 1 = twitch
% Percent dATP
dATP = dATP_percent; % dATP fraction
ATP = 100 - dATP; % ATP fraction
% Calcium transient parameters
a = a_i;
b = b_i;
c = c_i;
%% Parameters
% Crossbridge
kf = 250*(ATP/100) + kf_i*(dATP/100); % Myosin actin associaiton rate (P to A1) (s^-1)
k_f = 304.6708*(ATP/100) + k_f_i*(dATP/100); % Myosin actin dissociation rate (A1 to P) (s^-1)
kw = 112.3727*(ATP/100) + kw_i*(dATP/100); % A1 to A2 transition rate (s^-1)
k_w = 21.296*(ATP/100) + k_w_i*(dATP/100); % A2 to A1 transition rate (s^-1)
kp = 811.72*(ATP/100) + kp_i*(dATP/100); % A2 to A3 transition rate (s^-1)
k_p = 43.25*(ATP/100) + k_p_i*(dATP/100); % A3 to A2 transition rate (s^-1)
kg = 144.5586*(ATP/100) + kg_i*(dATP/100); % A3 to P transition rate (s^-1)
krecruit = 0.2069*(ATP/100) + krecruit_i*(dATP/100); % Force dependence of transition to OFF state (N^-1 m^-1)
km = 15.4691375; % OFF to ON transion rate (N^-1 m^-1)
k_m = 50.032; % ON to OFF transition rate (s^-1)
k_on = k_on_i; % Rate constant of Ca2+ binding to troponin C (uM^-1s^-1)
k_off = k_off_i; % Rate constant of Ca2+ unbinding from troponin C (s^-1)
k_coop = k_coop_i; % Strength of thin filament cooperativity
visc = 0.001; % Viscosity (mmHg*s/um)
kstiff1 = 1.8219e+04; % Stiffness constant due to myosin-actin interaction (kPa/um)
kstiff2 = 4.7822e+05; % Stiffness constant due to working stroke of XBs (kPa/um)
k_passive = 0.1; % Passive stiffness constant (kPa/um)
Lthin = 1.200; % Length of thin filament (nm)
Lthick = 1.670; % Length of thick filament (nm)
Lbare = 0.100; % Bare length of thin filament (nm)
dr = 0.01; % Power-stroke size (um)
L_rest_pas = 1.51; % Length at which passive force = 0 (um)
stim_period = 1; % Hz
% Metabolite concentrations based on mean sham rat (Lopez et al. 2020)
MgATP = 7.8873; % mM
MgADP = 0.0501; % mM
Pi = 1.2308; % mM
%% Run model
%% Force pCa
if XB_protocol == 0 % Force pCa
flag = 0;
Kse = 50000; % Series element stiffness (mmHg/um)
SL0_fpca = 2.25; % (um) based on experimental protocol (Regnier et al. 2004)
% For input into ODE solver
para = [MgATP, MgADP, Pi, kstiff1, kstiff2, k_passive, Kse, k_coop, k_on, k_off, km, krecruit, k_m, kf, k_f, kw, k_w, kp, k_p, kg, visc, stim_period, a, b, c];
% Defining time vector
tspan_fpca = 0:0.001:0.3;
% Defining Ca range
Ca_fraction_fpca = [0.1:0.1:100]; % pCa 7 to 4
init_fpca = [zeros(1, 10), SL0_fpca,0]; % Initial conditions for the model
init_fpca(10) = 1; % Setting the initial value for nonpermissible state equal to 1
SS_Ftotal_fpca = zeros(1, length(Ca_fraction_fpca)); % Initialize storage
parfor k = 1:length(Ca_fraction_fpca) % Parallel for loop
options = odeset('RelTol', 1e-3, 'AbsTol', 1e-6, 'MaxStep', 5e-3);
[t_fpca, Y_fpca] = ode15s(@dXdT_myocyte_mechanics, tspan_fpca, init_fpca, options, para, Ca_fraction_fpca(k), flag, Ca_flag);
% Get states
p1_0_fpca = Y_fpca(:,1);
A1_fpca{k} = p1_0_fpca;
p2_0_fpca = Y_fpca(:,4);
A2_fpca{k} = p2_0_fpca;
p2_1_fpca = Y_fpca(:,5);
p3_0_fpca = Y_fpca(:,7);
A3_fpca{k} = p3_0_fpca;
p3_1_fpca = Y_fpca(:,8);
SL_fpca = Y_fpca(:,11);
N_fpca = Y_fpca(:,10);
N_fpca_store{k} = N_fpca;
P_fpca{k} = 1 - N_fpca - p1_0_fpca - p2_0_fpca - p3_0_fpca;
% Overlap function
OV_Zaxis_fpca = min(Lthick/2, SL_fpca/2); % Overlap region closest to Z-axis (nm)
OV_Mline_fpca = max(SL_fpca/2 - (SL_fpca - Lthin), Lbare/2); % Overlap region closest to M-line (nm)
LOV_fpca = OV_Zaxis_fpca - OV_Mline_fpca; % Length of overlap (nm)
N_overlap_thick_fpca = LOV_fpca*2/(Lthick - Lbare); % Fraction of thick filament overlap
% Active force
B_process_fpca = kstiff2*dr*p3_0_fpca; % Force due to XB ratcheting
C_process_fpca = kstiff1*(p2_1_fpca + p3_1_fpca); % Force due to stretching of XBs
F_XB_fpca = N_overlap_thick_fpca.*(B_process_fpca + C_process_fpca); % Active force
% Passive force
gamma = 8;
F_passive_fpca = k_passive.*(SL_fpca - L_rest_pas).^gamma;
% Total force
Ftotal_fpca = F_XB_fpca + F_passive_fpca;
SS_Ftotal_fpca(k) = Ftotal_fpca(end)/10; % Store force output
end
end
if XB_protocol == 1 % Twitch
flag = 1;
Kse = 35; %35.5; %34; % Series element stiffness (mmHg/um)
SL0_twitch = 1.84; % (um) from Korte et al. 2011 experimental protocol
% For input into ODE solver
para = [MgATP, MgADP, Pi, kstiff1, kstiff2, k_passive, Kse, k_coop, k_on, k_off, km, krecruit, k_m, kf, k_f, kw, k_w, kp, k_p, kg, visc, stim_period, a, b, c];
beats = 3; % Number of beats
tspan_twitch = 0:0.00001:beats; % Time vector (each beat is 1000 ms)
last_beat = beats*1000-1000; % Point at which last beat starts (for plotting)
y_XB = [zeros(1, 10), SL0_twitch, 0]; % Initialize
y_XB(10) = 1; % Setting the initial value for nonpermissible state equal to 1
init_twitch = y_XB; % Initial conditions
options = odeset('RelTol',1e-3,'AbsTol',1e-6,'MaxStep',5e-3);
Ca_i = 0;
[t_twitch, Y_twitch] = ode15s(@dXdT_myocyte_mechanics, tspan_twitch, init_twitch, options, para, Ca_i, flag, Ca_flag);
% Get states
SL_twitch = Y_twitch(:,11);
p1_0_twitch = Y_twitch(:,1);
A1_twitch = p1_0_twitch;
p2_0_twitch = Y_twitch(:,4);
A2_twitch = p2_0_twitch;
p2_1_twitch = Y_twitch(:,5);
p3_0_twitch = Y_twitch(:,7);
A3_twitch = p3_0_twitch;
p3_1_twitch = Y_twitch(:,8);
N_twitch = Y_twitch(:,10);
P_twitch = 1-N_twitch-A1_twitch-A2_twitch-A3_twitch;
% Overlap function
OV_Zaxis_twitch = min(Lthick/2, SL_twitch/2); % Overlap region closest to Z-axis (nm)
OV_Mline_twitch = max(SL_twitch/2 - (SL_twitch - Lthin), Lbare/2); % Overal region closest to M-line (nm)
LOV_twitch = OV_Zaxis_twitch - OV_Mline_twitch; % Length of overlap (nm)
N_overlap_thick_twitch = LOV_twitch*2/(Lthick - Lbare); % Fraction of thick filament overlap
% Active force
B_process_twitch = kstiff2 * dr * p3_0_twitch; % Force due to XB ratcheting
C_process_twitch = kstiff1 * (p2_1_twitch + p3_1_twitch ); % Force due to stretching of XBs
F_XB_twitch = N_overlap_thick_twitch.*(B_process_twitch + C_process_twitch ); % Active force
% Passive force
gamma = 8;
F_passive_twitch = k_passive.*(SL_twitch - L_rest_pas).^gamma;
% Total force
Ftotal_twitch = F_XB_twitch + F_passive_twitch;
T_final_XB = t_twitch*1000; % Convert to ms
force_final = Ftotal_twitch/10; % Store force output
Shortening_final = SL_twitch; % Store shortening output
%% Get just last beat
for i = 1:length(T_final_XB)
if T_final_XB(i) > last_beat
idx_XB = i;
break
end
end
end
%% Calculate
if XB_protocol == 0 % Force pCa
[hill, ec50_n] = pCa_calculate((Ca_fraction_fpca')*10^(-6),(SS_Ftotal_fpca./max(SS_Ftotal_fpca))')
Ca50 = -log10(ec50_n)
peak_SS_force = max(SS_Ftotal_fpca)
else if XB_protocol == 1 % Twitch
force_final_last = force_final(idx_XB:end);
T_XB_final_last = T_final_XB(idx_XB:end);
Shortening_final_last = Shortening_final(idx_XB:end);
% Twitch
[min_force,idx_min] = min(force_final_last)
[max_force,idx_max] = max(force_final_last)
TTP_twitch = T_XB_final_last(idx_max) - last_beat
RT50 = (max(force_final_last)-min(force_final_last))*0.5 + min(force_final_last);
time_RT50_twitch = 0;
for i = idx_max:length(force_final_last)
if force_final_last(i) < RT50
time_RT50_twitch = ((T_XB_final_last(i) + T_XB_final_last(i-1))/2);
time_RT50_twitch = time_RT50_twitch - last_beat - TTP_twitch
break
end
end
RT90 = (max(force_final_last)-min(force_final_last))*0.1 + min(force_final_last);
time_RT90_twitch = 0;
for i = idx_max:length(force_final_last)
if force_final_last(i) < RT90
time_RT90_twitch = ((T_XB_final_last(i) + T_XB_final_last(i-1))/2);
time_RT90_twitch = time_RT90_twitch - last_beat - TTP_twitch
break
end
end
% Shortening
peak_shortening = min(Shortening_final_last./Shortening_final_last(1));
FS = -((min(Shortening_final_last)-max(Shortening_final_last))/max(Shortening_final_last))*100
[min_SL,idx_min] = min(Shortening_final_last);
TTP_shortening = T_XB_final_last(idx_min) - last_beat
RT50 = max(Shortening_final_last) - (max(Shortening_final_last)-min(Shortening_final_last))*0.5;
time_RT50_shortening = 0;
for i = idx_min:length(Shortening_final_last)
if Shortening_final_last(i) > RT50
time_RT50_shortening = ((T_XB_final_last(i) + T_XB_final_last(i-1))/2);
time_RT50_shortening = time_RT50_shortening - last_beat - TTP_shortening
break
end
end
RT90 = max(Shortening_final_last) - (max(Shortening_final_last) - min(Shortening_final_last))*0.1;
time_RT90_shortening = 0;
for i = idx_min:length(Shortening_final_last)
if Shortening_final_last(i) > RT90
time_RT90_shortening = ((T_XB_final_last(i) + T_XB_final_last(i-1))/2);
time_RT90_shortening = time_RT90_shortening - last_beat - TTP_shortening
break
end
end
end
end
% For output
if XB_protocol == 0 % force pCa
Ftotal_ktr = 0;
t_ktr = 0;
T_final_XB = 0;
idx_XB = 0;
Shortening_final = 0;
force_final = 0;
else if XB_protocol == 1 % Twitch
SS_Ftotal_fpca = 0;
Ftotal_ktr = 0;
t_ktr = 0;
end
end
end