Releases: marcpinet/neuralnetlib
Releases · marcpinet/neuralnetlib
neuralnetlib 3.3.3
- fix(example): weight init
- docs(examples): fresh run
- docs: update readme
- fix(layers): encoder and decoder layers
- fix(conv2d): align output shape calculation between im2col and convolve
- ci: bump version to 3.3.3
neuralnetlib 3.3.2
- fix(model): save method
- docs: update readme
- docs: update readme
- feat(autoencoder): add variational autoencoder (VAE)
- ci: bump version to 3.3.2
neuralnetlib 3.3.1
- docs: update todo
- feat(preprocessing): add cosine similarity
- docs: update todo
- feat(callbacks): add LearningRateScheduler
- ci: bump version to 3.3.1
neuralnetlib 3.3.0
- docs: update readme
- docs: update readme
- docs: update readme
- docs: remove useless comments
- docs: update readme
- docs: update readme
- refactor: code cleanup and formatting
- fix(config): layers and model config
- fix(metrics): pr auc and roc auc
- refactor(PCA): add explained variance ratio
- feat(Model): add autoencoder model
- feat(preprocessing): add t-SNE
- feat(layers): update compatibility dict
- ci: bump version to 3.3.0
neuralnetlib 3.2.2
- docs: update readme
- refactor: change model -> models for future implementations
- ci: bump version to 3.2.1
- ci: bump version to 3.2.2
neuralnetlib 3.2.1
- docs: update readme
- refactor: change model -> models for future implementations
- ci: bump version to 3.2.1
neuralnetlib 3.2.0
- feat(metrics): add roc auc, pr auc, r2 and classifrep
- feat(model): add gradient clipping and matrix padding optimizations
- docs(notebook): fresh run
- feat(Model): add temperature and sequence generation with improved sampling
- ci: bump version to 3.2.0
neuralnetlib 3.1.2
- feat: add n-gram class
- ci: bump version to 3.1.2
neuralnetlib 3.1.1
- fix: Adam time increment
- ci: bump version to 3.1.1
neuralnetlib 3.1.0
- docs: update dinosaurs example
- perf(Adam/RNN): better gradient handling
- ci: bump version to 3.0.8
- ci: bump version to 3.1.0