forked from udlbook/udlbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
406 lines (398 loc) · 29.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>udlbook</title>
<link rel="stylesheet" href="style.css">
</head>
<body>
<div id="head">
<div>
<h1 style="margin: 0; font-size: 36px">Understanding Deep Learning</h1>
by Simon J.D. Prince
<br>Published by MIT Press Dec 5th 2023.<br>
<ul>
<li>
<p style="font-size: larger; margin-bottom: 0">Download full PDF <a
href="https://github.com/udlbook/udlbook/releases/download/v2.00/UnderstandingDeepLearning_28_01_24_C.pdf">here</a>
</p>2024-01-28. CC-BY-NC-ND license<br>
<img src="https://img.shields.io/github/downloads/udlbook/udlbook/total" alt="download stats shield">
</li>
<li> Order your copy from <a href="https://mitpress.mit.edu/9780262048644/understanding-deep-learning/">here </a></li>
<li> Known errata can be found here: <a
href="https://github.com/udlbook/udlbook/raw/main/UDL_Errata.pdf">PDF</a></li>
<li> Report new errata via <a href="https://github.com/udlbook/udlbook/issues">github</a>
or contact me directly at [email protected]
<li> Follow me on <a href="https://twitter.com/SimonPrinceAI">Twitter</a> or <a
href="https://www.linkedin.com/in/simon-prince-615bb9165/">LinkedIn</a> for updates.
</ul>
<h2>Table of contents</h2>
<ul>
<li> Chapter 1 - Introduction
<li> Chapter 2 - Supervised learning
<li> Chapter 3 - Shallow neural networks
<li> Chapter 4 - Deep neural networks
<li> Chapter 5 - Loss functions
<li> Chapter 6 - Training models
<li> Chapter 7 - Gradients and initialization
<li> Chapter 8 - Measuring performance
<li> Chapter 9 - Regularization
<li> Chapter 10 - Convolutional networks
<li> Chapter 11 - Residual networks
<li> Chapter 12 - Transformers
<li> Chapter 13 - Graph neural networks
<li> Chapter 14 - Unsupervised learning
<li> Chapter 15 - Generative adversarial networks
<li> Chapter 16 - Normalizing flows
<li> Chapter 17 - Variational autoencoders
<li> Chapter 18 - Diffusion models
<li> Chapter 19 - Deep reinforcement learning
<li> Chapter 20 - Why does deep learning work?
<li> Chapter 21 - Deep learning and ethics
</ul>
</div>
<div id="cover">
<img src="https://raw.githubusercontent.com/udlbook/udlbook/main/UDLCoverSmall.jpg"
alt="front cover">
</div>
</div>
<div id="body">
<h2>Resources for instructors </h2>
<p>Instructor answer booklet available with proof of credentials via <a
href="https://mitpress.mit.edu/9780262048644/understanding-deep-learning"> MIT Press</a>.</p>
<p>Request an exam/desk copy via <a href="https://mitpress.ublish.com/request?cri=15055">MIT Press</a>.</p>
<p>Figures in PDF (vector) / SVG (vector) / Powerpoint (images):
<ul>
<li> Chapter 1 - Introduction: <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap1PDF.zip">PDF
Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1udnl5pUOAc8DcAQ7HQwyzP9pwL95ynnv">
SVG
Figures</a> / <a
href="https://docs.google.com/presentation/d/1IjTqIUvWCJc71b5vEJYte-Dwujcp7rvG/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 2 - Supervised learning: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap2PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1VSxcU5y1qNFlmd3Lb3uOWyzILuOj1Dla"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1Br7R01ROtRWPlNhC_KOommeHAWMBpWtz/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 3 - Shallow neural networks: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap3PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=19kZFWlXhzN82Zx02ByMmSZOO4T41fmqI"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1e9M3jB5I9qZ4dCBY90Q3Hwft_i068QVQ/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 4 - Deep neural networks: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap4PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1ojr0ebsOhzvS04ItAflX2cVmYqHQHZUa"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1LTSsmY4mMrJbqXVvoTOCkQwHrRKoYnJj/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 5 - Loss functions: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap5PDF.zip">PDF
Figures</a> / <a href="https://drive.google.com/uc?export=download&id=17MJO7fiMpFZVqKeqXTbQ36AMpmR4GizZ">
SVG
Figures</a> / <a
href="https://docs.google.com/presentation/d/1gcpC_3z9oRp87eMkoco-kdLD-MM54Puk/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 6 - Training models: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap6PDF.zip">PDF
Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1VPdhFRnCr9_idTrX0UdHKGAw2shUuwhK">
SVG
Figures</a> / <a
href="https://docs.google.com/presentation/d/1AKoeggAFBl9yLC7X5tushAGzCCxmB7EY/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 7 - Gradients and initialization: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap7PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1TTl4gvrTvNbegnml4CoGoKOOd6O8-PGs"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/11zhB6PI-Dp6Ogmr4IcI6fbvbqNqLyYcz/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 8 - Measuring performance: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap8PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=19eQOnygd_l0DzgtJxXuYnWa4z7QKJrJx"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1SHRmJscDLUuQrG7tmysnScb3ZUAqVMZo/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 9 - Regularization: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap9PDF.zip">PDF
Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1LprgnUGL7xAM9-jlGZC9LhMPeefjY0r0">
SVG
Figures</a> / <a
href="https://docs.google.com/presentation/d/1VwIfvjpdfTny6sEfu4ZETwCnw6m8Eg-5/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 10 - Convolutional networks: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap10PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1-Wb3VzaSvVeRzoUzJbI2JjZE0uwqupM9"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1MtfKBC4Y9hWwGqeP6DVwUNbi1j5ncQCg/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 11 - Residual networks: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap11PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1Mr58jzEVseUAfNYbGWCQyDtEDwvfHRi1"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1saY8Faz0KTKAAifUrbkQdLA2qkyEjOPI/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 12 - Transformers: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap12PDF.zip">PDF
Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1txzOVNf8-jH4UfJ6SLnrtOfPd1Q3ebzd">
SVG
Figures</a> / <a
href="https://docs.google.com/presentation/d/1GVNvYWa0WJA6oKg89qZre-UZEhABfm0l/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 13 - Graph neural networks: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap13PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1lQIV6nRp6LVfaMgpGFhuwEXG-lTEaAwe"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1YwF3U82c1mQ74c1WqHVTzLZ0j7GgKaWP/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 14 - Unsupervised learning: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap14PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1aMbI6iCuUvOywqk5pBOmppJu1L1anqsM"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1A-lBGv3NHl4L32NvfFgy1EKeSwY-0UeB/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">
PowerPoint Figures</a>
<li> Chapter 15 - Generative adversarial networks: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap15PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1EErnlZCOlXc3HK7m83T2Jh_0NzIUHvtL"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/10Ernk41ShOTf4IYkMD-l4dJfKATkXH4w/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 16 - Normalizing flows: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap16PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1B9bxtmdugwtg-b7Y4AdQKAIEVWxjx8l3"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1nLLzqb9pdfF_h6i1HUDSyp7kSMIkSUUA/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 17 - Variational autoencoders: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap17PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1SNtNIY7khlHQYMtaOH-FosSH3kWwL4b7"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1lQE4Bu7-LgvV2VlJOt_4dQT-kusYl7Vo/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Chapter 18 - Diffusion models: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap18PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1A-pIGl4PxjVMYOKAUG3aT4a8wD3G-q_r"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1x_ufIBtVPzWUvRieKMkpw5SdRjXWwdfR/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">
PowerPoint Figures</a>
<li> Chapter 19 - Deep reinforcement learning: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap19PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1a5WUoF7jeSgwC_PVdckJi1Gny46fCqh0"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1TnYmVbFNhmMFetbjyfXGmkxp1EHauMqr/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">
PowerPoint Figures </a>
<li> Chapter 20 - Why does deep learning work?: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap20PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1M2d0DHEgddAQoIedKSDTTt7m1ZdmBLQ3"> SVG Figures</a>
/
<a href="https://docs.google.com/presentation/d/1coxF4IsrCzDTLrNjRagHvqB_FBy10miA/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">
PowerPoint Figures</a>
<li> Chapter 21 - Deep learning and ethics: <a
href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLChap21PDF.zip">PDF Figures</a> / <a
href="https://drive.google.com/uc?export=download&id=1jixmFfwmZkW_UVYzcxmDcMsdFFtnZ0bU"> SVG Figures</a>/
<a
href="https://docs.google.com/presentation/d/1EtfzanZYILvi9_-Idm28zD94I_6OrN9R/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">PowerPoint
Figures</a>
<li> Appendices - <a href="https://github.com/udlbook/udlbook/raw/main/PDFFigures/UDLAppendixPDF.zip">PDF
Figures</a> / <a href="https://drive.google.com/uc?export=download&id=1k2j7hMN40ISPSg9skFYWFL3oZT7r8v-l">
SVG
Figures</a> / <a
href="https://docs.google.com/presentation/d/1_2cJHRnsoQQHst0rwZssv-XH4o5SEHks/edit?usp=drive_link&ouid=110441678248547154185&rtpof=true&sd=true">Powerpoint
Figures</a>
</ul>
Instructions for editing figures / equations can be found <a
href="https://drive.google.com/file/d/1T_MXXVR4AfyMnlEFI-UVDh--FXI5deAp/view?usp=sharing">here</a>.
<p> My slides for 20 lecture undergraduate deep learning course:</p>
<ul>
<li><a href="https://drive.google.com/uc?export=download&id=17RHb11BrydOvxSFNbRIomE1QKLVI087m">1. Introduction</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1491zkHULC7gDfqlV6cqUxyVYXZ-de-Ub">2. Supervised Learning</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1XkP1c9EhOBowla1rT1nnsDGMf2rZvrt7">3. Shallow Neural Networks</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1e2ejfZbbfMKLBv0v-tvBWBdI8gO3SSS1">4. Deep Neural Networks</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1fxQ_a1Q3eFPZ4kPqKbak6_emJK-JfnRH">5. Loss Functions</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=17QQ5ZzXBtR_uCNCUU1gPRWWRUeZN9exW">6. Fitting Models</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1hC8JUCOaFWiw3KGn0rm7nW6mEq242QDK">7. Computing Gradients</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1tSjCeAVg0JCeBcPgDJDbi7Gg43Qkh9_d">7b. Initialization</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1RVZW3KjEs0vNSGx3B2fdizddlr6I0wLl">8. Performance</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1LTicIKPRPbZRkkg6qOr1DSuOB72axood">9. Regularization</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1bGVuwAwrofzZdfvj267elIzkYMIvYFj0">10. Convolutional Networks</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=14w31QqWRDix1GdUE-na0_E0kGKBhtKzs">11. Image Generation</a></li>
<li><a href="https://drive.google.com/uc?export=download&id=1af6bTTjAbhDYfrDhboW7Fuv52Gk9ygKr">12. Transformers and LLMs</a></li>
</ul>
<h2>Resources for students</h2>
<p>Answers to selected questions: <a
href="https://github.com/udlbook/udlbook/raw/main/UDL_Answer_Booklet_Students.pdf">PDF</a>
</p>
<p>Python notebooks: (Early ones more thoroughly tested than later ones!)</p>
<ul>
<li> Notebook 1.1 - Background mathematics: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap01/1_1_BackgroundMathematics.ipynb">ipynb/colab</a>
</li>
<li> Notebook 2.1 - Supervised learning: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap02/2_1_Supervised_Learning.ipynb">ipynb/colab</a>
</li>
<li> Notebook 3.1 - Shallow networks I: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_1_Shallow_Networks_I.ipynb">ipynb/colab </a>
</li>
<li> Notebook 3.2 - Shallow networks II: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_2_Shallow_Networks_II.ipynb">ipynb/colab </a>
</li>
<li> Notebook 3.3 - Shallow network regions: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_3_Shallow_Network_Regions.ipynb">ipynb/colab </a>
</li>
<li> Notebook 3.4 - Activation functions: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap03/3_4_Activation_Functions.ipynb">ipynb/colab </a>
</li>
<li> Notebook 4.1 - Composing networks: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap04/4_1_Composing_Networks.ipynb">ipynb/colab </a>
</li>
<li> Notebook 4.2 - Clipping functions: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap04/4_2_Clipping_functions.ipynb">ipynb/colab </a>
</li>
<li> Notebook 4.3 - Deep networks: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap04/4_3_Deep_Networks.ipynb">ipynb/colab </a>
</li>
<li> Notebook 5.1 - Least squares loss: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap05/5_1_Least_Squares_Loss.ipynb">ipynb/colab </a>
</li>
<li> Notebook 5.2 - Binary cross-entropy loss: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap05/5_2_Binary_Cross_Entropy_Loss.ipynb">ipynb/colab </a>
</li>
<li> Notebook 5.3 - Multiclass cross-entropy loss: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap05/5_3_Multiclass_Cross_entropy_Loss.ipynb">ipynb/colab </a>
</li>
<li> Notebook 6.1 - Line search: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_1_Line_Search.ipynb">ipynb/colab </a>
</li>
<li> Notebook 6.2 - Gradient descent: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_2_Gradient_Descent.ipynb">ipynb/colab </a>
</li>
<li> Notebook 6.3 - Stochastic gradient descent: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_3_Stochastic_Gradient_Descent.ipynb">ipynb/colab </a>
</li>
<li> Notebook 6.4 - Momentum: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_4_Momentum.ipynb">ipynb/colab </a>
</li>
<li> Notebook 6.5 - Adam: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap06/6_5_Adam.ipynb">ipynb/colab </a>
</li>
<li> Notebook 7.1 - Backpropagation in toy model: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap07/7_1_Backpropagation_in_Toy_Model.ipynb">ipynb/colab </a>
</li>
<li> Notebook 7.2 - Backpropagation: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap07/7_2_Backpropagation.ipynb">ipynb/colab </a>
</li>
<li> Notebook 7.3 - Initialization: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap07/7_3_Initialization.ipynb">ipynb/colab </a>
</li>
<li> Notebook 8.1 - MNIST-1D performance: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_1_MNIST_1D_Performance.ipynb">ipynb/colab </a>
</li>
<li> Notebook 8.2 - Bias-variance trade-off: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_2_Bias_Variance_Trade_Off.ipynb">ipynb/colab </a>
</li>
<li> Notebook 8.3 - Double descent: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_3_Double_Descent.ipynb">ipynb/colab </a>
</li>
<li> Notebook 8.4 - High-dimensional spaces: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap08/8_4_High_Dimensional_Spaces.ipynb">ipynb/colab </a>
</li>
<li> Notebook 9.1 - L2 regularization: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_1_L2_Regularization.ipynb">ipynb/colab </a>
</li>
<li> Notebook 9.2 - Implicit regularization: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_2_Implicit_Regularization.ipynb">ipynb/colab </a>
</li>
<li> Notebook 9.3 - Ensembling: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_3_Ensembling.ipynb">ipynb/colab </a>
</li>
<li> Notebook 9.4 - Bayesian approach: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_4_Bayesian_Approach.ipynb">ipynb/colab </a>
</li>
<li> Notebook 9.5 - Augmentation <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap09/9_5_Augmentation.ipynb">ipynb/colab </a>
</li>
<li> Notebook 10.1 - 1D convolution: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_1_1D_Convolution.ipynb">ipynb/colab </a>
</li>
<li> Notebook 10.2 - Convolution for MNIST-1D: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_2_Convolution_for_MNIST_1D.ipynb">ipynb/colab </a>
</li>
<li> Notebook 10.3 - 2D convolution: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_3_2D_Convolution.ipynb">ipynb/colab </a>
</li>
<li> Notebook 10.4 - Downsampling & upsampling: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_4_Downsampling_and_Upsampling.ipynb">ipynb/colab </a>
</li>
<li> Notebook 10.5 - Convolution for MNIST: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap10/10_5_Convolution_For_MNIST.ipynb">ipynb/colab </a>
</li>
<li> Notebook 11.1 - Shattered gradients: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap11/11_1_Shattered_Gradients.ipynb">ipynb/colab </a>
</li>
<li> Notebook 11.2 - Residual networks: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap11/11_2_Residual_Networks.ipynb">ipynb/colab </a>
</li>
<li> Notebook 11.3 - Batch normalization: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap11/11_3_Batch_Normalization.ipynb">ipynb/colab </a>
</li>
<li> Notebook 12.1 - Self-attention: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap12/12_1_Self_Attention.ipynb">ipynb/colab </a>
</li>
<li> Notebook 12.2 - Multi-head self-attention: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap12/12_2_Multihead_Self_Attention.ipynb">ipynb/colab </a>
</li>
<li> Notebook 12.3 - Tokenization: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap12/12_3_Tokenization.ipynb">ipynb/colab </a>
</li>
<li> Notebook 12.4 - Decoding strategies: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap12/12_4_Decoding_Strategies.ipynb">ipynb/colab </a>
</li>
<li> Notebook 13.1 - Encoding graphs: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap13/13_1_Graph_Representation.ipynb">ipynb/colab </a>
</li>
<li> Notebook 13.2 - Graph classification : <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap13/13_2_Graph_Classification.ipynb">ipynb/colab </a>
</li>
<li> Notebook 13.3 - Neighborhood sampling: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap13/13_3_Neighborhood_Sampling.ipynb">ipynb/colab </a>
</li>
<li> Notebook 13.4 - Graph attention: <a
href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap13/13_4_Graph_Attention_Networks.ipynb">ipynb/colab </a>
</li>
<li> Notebook 15.1 - GAN toy example: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap15/15_1_GAN_Toy_Example.ipynb">ipynb/colab </a></li>
<li> Notebook 15.2 - Wasserstein distance: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap15/15_2_Wasserstein_Distance.ipynb">ipynb/colab </a></li>
<li> Notebook 16.1 - 1D normalizing flows: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap16/16_1_1D_Normalizing_Flows.ipynb">ipynb/colab </a></li>
<li> Notebook 16.2 - Autoregressive flows: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap16/16_2_Autoregressive_Flows.ipynb">ipynb/colab </a></li>
<li> Notebook 16.3 - Contraction mappings: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap16/16_3_Contraction_Mappings.ipynb">ipynb/colab </a></li>
<li> Notebook 17.1 - Latent variable models: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap17/17_1_Latent_Variable_Models.ipynb">ipynb/colab </a></li>
<li> Notebook 17.2 - Reparameterization trick: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap17/17_2_Reparameterization_Trick.ipynb">ipynb/colab </a></li>
<li> Notebook 17.3 - Importance sampling: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap17/17_3_Importance_Sampling.ipynb">ipynb/colab </a></li>
<li> Notebook 18.1 - Diffusion encoder: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap18/18_1_Diffusion_Encoder.ipynb">ipynb/colab </a></li>
<li> Notebook 18.2 - 1D diffusion model: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap18/18_2_1D_Diffusion_Model.ipynb">ipynb/colab </a></li>
<li> Notebook 18.3 - Reparameterized model: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap18/18_3_Reparameterized_Model.ipynb">ipynb/colab </a></li>
<li> Notebook 18.4 - Families of diffusion models: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap18/18_4_Families_of_Diffusion_Models.ipynb">ipynb/colab </a></li>
<li> Notebook 19.1 - Markov decision processes: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap19/19_1_Markov_Decision_Processes.ipynb">ipynb/colab </a></li>
<li> Notebook 19.2 - Dynamic programming: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap19/19_2_Dynamic_Programming.ipynb">ipynb/colab </a></li>
<li> Notebook 19.3 - Monte-Carlo methods: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap19/19_3_Monte_Carlo_Methods.ipynb">ipynb/colab </a></li>
<li> Notebook 19.4 - Temporal difference methods: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap19/19_4_Temporal_Difference_Methods.ipynb">ipynb/colab </a></li>
<li> Notebook 19.5 - Control variates: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap19/19_5_Control_Variates.ipynb">ipynb/colab </a></li>
<li> Notebook 20.1 - Random data: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap20/20_1_Random_Data.ipynb">ipynb/colab </a></li>
<li> Notebook 20.2 - Full-batch gradient descent: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap20/20_2_Full_Batch_Gradient_Descent.ipynb">ipynb/colab </a></li>
<li> Notebook 20.3 - Lottery tickets: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap20/20_3_Lottery_Tickets.ipynb">ipynb/colab </a></li>
<li> Notebook 20.4 - Adversarial attacks: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap20/20_4_Adversarial_Attacks.ipynb">ipynb/colab </a></li>
<li> Notebook 21.1 - Bias mitigation: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap21/21_1_Bias_Mitigation.ipynb">ipynb/colab </a></li>
<li> Notebook 21.2 - Explainability: <a href="https://github.com/udlbook/udlbook/blob/main/Notebooks/Chap21/21_2_Explainability.ipynb">ipynb/colab </a></li>
</ul>
<br>
<h2>Citation</h2>
<pre><code>
@book{prince2023understanding,
author = "Simon J.D. Prince",
title = "Understanding Deep Learning",
publisher = "MIT Press",
year = 2023,
url = "http://udlbook.com"
}
</code></pre>
</div>
</body>