-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
47 lines (31 loc) · 1.5 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Code adapted from
# 1. https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/voc-fcn8s/net.py
# 2. https://github.com/YangZhang4065/AdaptationSeg/blob/master/FCN_da.py
import numpy as np
import tensorflow as tf
def weighted_ce_loss(num_classes = 20, class_to_ignore = 0):
mask = np.ones(num_classes)
mask[class_to_ignore] = 0
mask = tf.keras.backend.variable(mask, dtype='float32')
def wce_loss(y_true, y_pred, from_logits=True):
# Preprocess data
if from_logits == True:
y_pred = tf.keras.backend.softmax(y_pred, axis = -1)
# See https://stackoverflow.com/questions/33712178/tensorflow-nan-bug
y_pred = tf.clip_by_value(y_pred, 1e-10, 1)
loss = tf.keras.backend.categorical_crossentropy(y_true * mask, y_pred, axis=-1)
return tf.keras.backend.mean(loss)
return wce_loss
def masked_ce_loss(num_classes = 20, class_to_ignore = 0, from_logits=False):
mask = np.ones(num_classes)
mask[class_to_ignore] = 0
mask = tf.keras.backend.variable(mask, dtype='float32')
def masked_loss(y_true, y_pred):
# Preprocess data
if from_logits == True:
y_pred = tf.keras.backend.softmax(y_pred, axis = -1)
# See https://stackoverflow.com/questions/33712178/tensorflow-nan-bug
y_pred = tf.clip_by_value(y_pred, 1e-10, 1)
loss = tf.keras.backend.categorical_crossentropy(y_true * mask, y_pred, axis=-1)
return tf.keras.backend.mean(loss)
return masked_loss