-
Notifications
You must be signed in to change notification settings - Fork 7
/
bb_sga.py
311 lines (264 loc) · 15.2 KB
/
bb_sga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
"""Perform inference/compression on a pre-trained mean-scale hyperprior model modified for lossy bits-back.
Implement SGA + BB (M2 in Table 1 of paper), in
Yibo Yang, Robert Bamler, Stephan Mandt:
"Improving Inference for Neural Image Compression", NeurIPS 2020
https://arxiv.org/pdf/2006.04240.pdf
"""
import os
import numpy as np
import tensorflow.compat.v1 as tf
from absl import app
from tensorflow_compression.python.ops import math_ops
seed = 0
np.random.seed(seed)
tf.set_random_seed(seed)
import tensorflow_compression as tfc
from nn_models import AnalysisTransform, SynthesisTransform, HyperAnalysisTransform
from nn_models import MBT2018HyperSynthesisTransform as HyperSynthesisTransform
SCALES_MIN = 0.11
SCALES_MAX = 256
SCALES_LEVELS = 64
likelihood_lowerbound = 1e-9
variance_upperbound = 2e1
def compress(args):
"""Compresses an image, or a batch of images of the same shape in npy format."""
from configs import get_eval_batch_size
if args.input_file.endswith('.npy'):
# .npy file should contain N images of the same shapes, in the form of an array of shape [N, H, W, 3]
X = np.load(args.input_file)
else:
# Load input image and add batch dimension.
from PIL import Image
x = np.asarray(Image.open(args.input_file).convert('RGB'))
X = x[None, ...]
num_images = int(X.shape[0])
img_num_pixels = int(np.prod(X.shape[1:-1]))
X = X.astype('float32')
X /= 255.
eval_batch_size = get_eval_batch_size(img_num_pixels)
dataset = tf.data.Dataset.from_tensor_slices(X)
dataset = dataset.batch(batch_size=eval_batch_size)
# https://www.tensorflow.org/api_docs/python/tf/compat/v1/data/Iterator
# Importantly, each sess.run(op) call will consume a new batch, where op is any operation that depends on
# x. Therefore if multiple ops need to be evaluated on the same batch of data, they have to be grouped like
# sess.run([op1, op2, ...]).
# x = dataset.make_one_shot_iterator().get_next()
x_next = dataset.make_one_shot_iterator().get_next()
x_ph = x = tf.placeholder('float32', (None, *X.shape[1:])) # keep a reference around for feed_dict
#### BEGIN build compression graph ####
from utils import log_normal_pdf
from learned_prior import BMSHJ2018Prior
hyper_prior = BMSHJ2018Prior(args.num_filters, dims=(3, 3, 3))
# Instantiate model.
analysis_transform = AnalysisTransform(args.num_filters)
synthesis_transform = SynthesisTransform(args.num_filters)
hyper_analysis_transform = HyperAnalysisTransform(args.num_filters, num_output_filters=2 * args.num_filters)
hyper_synthesis_transform = HyperSynthesisTransform(args.num_filters, num_output_filters=2 * args.num_filters)
# entropy_bottleneck = tfc.EntropyBottleneck()
# Initial optimization (where we still have access to x)
# Soft-to-hard rounding with Gumbel-softmax trick; for each element of z_tilde, let R be a 2D auxiliary one-hot
# random vector, such that R=[1, 0] means rounding DOWN and [0, 1] means rounding UP.
# Let the logits of each outcome be -(z - z_floor) / T and -(z_ceil - z) / T (i.e., Boltzmann distribution with
# energies (z - floor(z)) and (ceil(z) - z), so p(R==[1,0]) = softmax((z - z_floor) / T), ...
# Let z_tilde = p(R==[1,0]) * floor(z) + p(R==[0,1]) * ceil(z), so z_tilde -> round(z) as T -> 0.
import tensorflow_probability as tfp
T = tf.placeholder('float32', shape=[], name='temperature')
y_init = analysis_transform(x)
y = tf.placeholder('float32', y_init.shape)
y_floor = tf.floor(y)
y_ceil = tf.ceil(y)
y_bds = tf.stack([y_floor, y_ceil], axis=-1)
epsilon = 1e-5
logits = tf.stack([-tf.math.atanh(tf.clip_by_value(y - y_floor, -1 + epsilon, 1 - epsilon)) / T,
-tf.math.atanh(tf.clip_by_value(y_ceil - y, -1 + epsilon, 1 - epsilon)) / T],
axis=-1) # last dim are logits for DOWN or UP; clip to prevent NaN as temperature -> 0
rounding_dist = tfp.distributions.RelaxedOneHotCategorical(T,
logits=logits) # technically we can use a different temperature here
sample_concrete = rounding_dist.sample()
y_tilde = tf.reduce_sum(y_bds * sample_concrete, axis=-1) # inner product in last dim
x_tilde = synthesis_transform(y_tilde)
x_shape = tf.shape(x)
x_tilde = x_tilde[:, :x_shape[1], :x_shape[2], :] # crop reconstruction to have the same shape as input
# z_tilde ~ q(z_tilde | h_a(\tilde y))
z_mean_init, z_logvar_init = tf.split(hyper_analysis_transform(y_tilde), num_or_size_splits=2, axis=-1)
z_mean = tf.placeholder('float32', z_mean_init.shape) # initialize to inference network results
z_logvar = tf.placeholder('float32', z_logvar_init.shape)
eps = tf.random.normal(shape=tf.shape(z_mean))
z_tilde = eps * tf.exp(z_logvar * .5) + z_mean
log_q_z_tilde = log_normal_pdf(z_tilde, z_mean, z_logvar) # bits back
# compute the pdf of z_tilde under the flexible (hyper)prior p(z_tilde) ("z_likelihoods")
z_likelihoods = hyper_prior.pdf(z_tilde, stop_gradient=False)
z_likelihoods = math_ops.lower_bound(z_likelihoods, likelihood_lowerbound)
# compute parameters of p(y_tilde|z_tilde)
mu, sigma = tf.split(hyper_synthesis_transform(z_tilde), num_or_size_splits=2, axis=-1)
sigma = tf.exp(sigma) # make positive
# need to handle images with non-standard sizes during compression; mu/sigma must have the same shape as y
y_shape = tf.shape(y_tilde)
mu = mu[:, :y_shape[1], :y_shape[2], :]
sigma = sigma[:, :y_shape[1], :y_shape[2], :]
scale_table = np.exp(np.linspace(np.log(SCALES_MIN), np.log(SCALES_MAX), SCALES_LEVELS))
conditional_bottleneck = tfc.GaussianConditional(sigma, scale_table, mean=mu)
# compute the pdf of y_tilde under the conditional prior/entropy model p(y_tilde|z_tilde)
# = N(y_tilde|mu, sigma^2) conv U(-0.5, 0.5)
y_likelihoods = conditional_bottleneck._likelihood(y_tilde) # p(\tilde y | \tilde z)
if conditional_bottleneck.likelihood_bound > 0:
likelihood_bound = conditional_bottleneck.likelihood_bound
y_likelihoods = math_ops.lower_bound(y_likelihoods, likelihood_bound)
#### END build compression graph ####
# Total number of bits divided by number of pixels.
# - log p(\tilde y | \tilde z) - log p(\tilde z) - - log q(\tilde z | \tilde y)
axes_except_batch = list(range(1, len(x.shape))) # should be [1,2,3]
batch_log_q_z_tilde = tf.reduce_sum(log_q_z_tilde, axis=axes_except_batch)
bpp_back = -batch_log_q_z_tilde / (np.log(2) * img_num_pixels)
batch_log_cond_p_y_tilde = tf.reduce_sum(tf.log(y_likelihoods), axis=axes_except_batch)
y_bpp = -batch_log_cond_p_y_tilde / (np.log(2) * img_num_pixels)
batch_log_p_z_tilde = tf.reduce_sum(tf.log(z_likelihoods), axis=axes_except_batch)
z_bpp = -batch_log_p_z_tilde / (np.log(2) * img_num_pixels)
eval_bpp = y_bpp + z_bpp - bpp_back # shape (N,)
train_bpp = tf.reduce_mean(eval_bpp)
# Mean squared error across pixels.
train_mse = tf.reduce_mean(tf.squared_difference(x, x_tilde))
# Multiply by 255^2 to correct for rescaling.
# float_train_mse = train_mse
# psnr = - 10 * (tf.log(float_train_mse) / np.log(10)) # float MSE computed on float images
train_mse *= 255 ** 2
# The rate-distortion cost.
if args.lmbda < 0:
args.lmbda = float(args.runname.split('lmbda=')[1].split('-')[0]) # re-use the lmbda as used for training
print('Defaulting lmbda (mse coefficient) to %g as used in model training.' % args.lmbda)
if args.lmbda > 0:
rd_loss = args.lmbda * train_mse + train_bpp
else:
rd_loss = train_bpp
rd_gradients = tf.gradients(rd_loss, [y, z_mean, z_logvar])
r_gradients = tf.gradients(train_bpp, [z_mean, z_logvar])
# Bring both images back to 0..255 range, for evaluation only.
x *= 255
x_tilde = tf.clip_by_value(x_tilde, 0, 1)
x_tilde = tf.round(x_tilde * 255)
mse = tf.reduce_mean(tf.squared_difference(x, x_tilde), axis=axes_except_batch) # shape (N,)
psnr = tf.image.psnr(x_tilde, x, 255) # shape (N,)
msssim = tf.image.ssim_multiscale(x_tilde, x, 255) # shape (N,)
msssim_db = -10 * tf.log(1 - msssim) / np.log(10) # shape (N,)
with tf.Session() as sess:
# Load the latest model checkpoint, get compression stats
save_dir = os.path.join(args.checkpoint_dir, args.runname)
latest = tf.train.latest_checkpoint(checkpoint_dir=save_dir)
tf.train.Saver().restore(sess, save_path=latest)
eval_fields = ['mse', 'psnr', 'msssim', 'msssim_db', 'est_bpp', 'est_y_bpp', 'est_z_bpp', 'est_bpp_back']
eval_tensors = [mse, psnr, msssim, msssim_db, eval_bpp, y_bpp, z_bpp, bpp_back]
all_results_arrs = {key: [] for key in eval_fields} # append across all batches
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
log_itv = 100
rd_lr = 0.005
# rd_opt_its = args.sga_its
rd_opt_its = 2000
annealing_scheme = 'exp0'
annealing_rate = args.annealing_rate # default annealing_rate = 1e-3
t0 = args.t0 # default t0 = 700
T_ub = 0.5 # max/initial temperature
from utils import annealed_temperature
r_lr = 0.003
r_opt_its = 2000
from adam import Adam
batch_idx = 0
while True:
try:
x_val = sess.run(x_next)
x_feed_dict = {x_ph: x_val}
# 1. Perform R-D optimization conditioned on ground truth x
print('----RD Optimization----')
y_cur = sess.run(y_init, feed_dict=x_feed_dict) # np arrays
z_mean_cur, z_logvar_cur = sess.run([z_mean_init, z_logvar_init], feed_dict={y_tilde: y_cur})
rd_loss_hist = []
adam_optimizer = Adam(lr=rd_lr)
opt_record = {'its': [], 'T': [], 'rd_loss': [], 'rd_loss_after_rounding': []}
for it in range(rd_opt_its):
temperature = annealed_temperature(it, r=annealing_rate, ub=T_ub, scheme=annealing_scheme, t0=t0)
grads, obj, mse_, train_bpp_, psnr_ = sess.run([rd_gradients, rd_loss, train_mse, train_bpp, psnr],
feed_dict={y: y_cur, z_mean: z_mean_cur,
z_logvar: z_logvar_cur,
**x_feed_dict, T: temperature})
y_cur, z_mean_cur, z_logvar_cur = adam_optimizer.update([y_cur, z_mean_cur, z_logvar_cur], grads)
if it % log_itv == 0 or it + 1 == rd_opt_its:
psnr_ = psnr_.mean()
if args.verbose:
bpp_after_rounding, psnr_after_rounding, rd_loss_after_rounding = sess.run(
[train_bpp, psnr, rd_loss],
feed_dict={
y_tilde: np.round(y_cur),
z_mean: z_mean_cur,
z_logvar: z_logvar_cur,
**x_feed_dict})
psnr_after_rounding = psnr_after_rounding.mean()
print(
'it=%d, T=%.3f rd_loss=%.4f mse=%.3f bpp=%.4f psnr=%.4f\t after rounding: rd_loss=%.4f, bpp=%.4f psnr=%.4f'
% (
it, temperature, obj, mse_, train_bpp_, psnr_, rd_loss_after_rounding,
bpp_after_rounding,
psnr_after_rounding))
else:
print('it=%d, T=%.3f rd_loss=%.4f mse=%.3f bpp=%.4f psnr=%.4f' % (
it, temperature, obj, mse_, train_bpp_, psnr_))
rd_loss_hist.append(obj)
print()
# 2. Fix y_tilde, perform rate optimization w.r.t. z_mean and z_logvar.
y_tilde_cur = np.round(y_cur) # this is the latents we end up transmitting
# rate_feed_dict = {y_tilde: y_tilde_cur, **x_feed_dict}
rate_feed_dict = {y_tilde: y_tilde_cur}
np.random.seed(seed)
tf.set_random_seed(seed)
print('----Rate Optimization----')
# Reinitialize based on the value of y_tilde
z_mean_cur, z_logvar_cur = sess.run([z_mean_init, z_logvar_init], feed_dict=rate_feed_dict) # np arrays
r_loss_hist = []
# rate_grad_hist = []
adam_optimizer = Adam(lr=r_lr)
for it in range(r_opt_its):
grads, obj = sess.run([r_gradients, train_bpp],
feed_dict={z_mean: z_mean_cur, z_logvar: z_logvar_cur, **rate_feed_dict})
z_mean_cur, z_logvar_cur = adam_optimizer.update([z_mean_cur, z_logvar_cur], grads)
if it % log_itv == 0 or it + 1 == r_opt_its:
print('it=', it, '\trate=', obj)
r_loss_hist.append(obj)
# rate_grad_hist.append(np.mean(np.abs(grads)))
print()
# fig, axes = plt.subplots(nrows=2, sharex=True)
# axes[0].plot(rd_loss_hist)
# axes[0].set_ylabel('RD loss')
# axes[1].plot(r_loss_hist)
# axes[1].set_ylabel('Rate loss')
# axes[1].set_xlabel('SGD iterations')
# plt.savefig('plots/local_q_opt_hist-%s-input=%s-b=%d.png' %
# (args.runname, os.path.basename(args.input_file), batch_idx))
# If requested, transform the quantized image back and measure performance.
eval_arrs = sess.run(eval_tensors, feed_dict={y_tilde: y_tilde_cur, z_mean: z_mean_cur,
z_logvar: z_logvar_cur, **x_feed_dict})
for field, arr in zip(eval_fields, eval_arrs):
all_results_arrs[field] += arr.tolist()
batch_idx += 1
except tf.errors.OutOfRangeError:
break
for field in eval_fields:
all_results_arrs[field] = np.asarray(all_results_arrs[field])
input_file = os.path.basename(args.input_file)
results_dict = all_results_arrs
trained_script_name = args.runname.split('-')[0]
script_name = os.path.splitext(os.path.basename(__file__))[0] # current script name, without extension
save_file = 'rd-%s-input=%s.npz' % (args.runname, input_file)
if script_name != trained_script_name:
save_file = 'rd-%s-lmbda=%g+%s-input=%s.npz' % (
script_name, args.lmbda, args.runname, input_file)
np.savez(os.path.join(args.results_dir, save_file), **results_dict)
for field in eval_fields:
arr = all_results_arrs[field]
print('Avg {}: {:0.4f}'.format(field, arr.mean()))
from tf_boilerplate import parse_args
def main(args):
# Invoke subcommand.
assert args.command == "compress", 'Only compression is supported.'
compress(args)
if __name__ == "__main__":
app.run(main, flags_parser=parse_args)