-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
77 lines (65 loc) · 2.55 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
from model.model import Unet, Flow, GaussianDiffusion, Trainer
from data.load_data import load_data
from config import config
def main():
if config.data_config["multi"]:
in_ch_model = 3*config.data_config["img_channel"] + 10 + 1 # all channels plus noise : (1 + 4 + 1) + 1 : (precip + multi + topo) + noise
in_ch_flow = config.data_config["img_channel"] + 10 + 1 # all channels from current low res and past two high res : 3 * (1 + 4 + 1) : 3 * (precip + multi + topo)
in_ch_isr = config.data_config["img_channel"] + 10 + 1 # all channels from current low res : 1 + 4 + 1 : precip + multi + topo
else:
in_ch_model = 2*config.data_config["img_channel"]
in_ch_flow = config.data_config["img_channel"]
in_ch_isr = config.data_config["img_channel"]
model = Unet(
dim = config.dim,
channels = in_ch_model,
out_dim = config.data_config["img_channel"],
dim_mults = config.dim_mults,
learned_sinusoidal_cond = config.learned_sinusoidal_cond,
random_fourier_features = config.random_fourier_features,
learned_sinusoidal_dim = config.learned_sinusoidal_dim
).cuda()
flow = Flow(
dim = config.dim,
channels = in_ch_flow,
out_dim = config.data_config["img_channel"],
dim_mults = config.dim_mults
).cuda()
diffusion = GaussianDiffusion(
model,
flow,
image_size = config.data_config["img_size"],
in_ch = in_ch_isr,
timesteps = config.diffusion_steps,
sampling_timesteps = config.sampling_steps,
loss_type = config.loss,
objective = config.objective
).cuda()
train_dl, val_dl = load_data(
config.data_config,
config.batch_size,
pin_memory = True,
num_workers = 4,
)
trainer = Trainer(
diffusion,
train_dl,
val_dl,
train_batch_size = config.batch_size,
train_lr = config.lr,
train_num_steps = config.steps,
gradient_accumulate_every = config.grad_acc,
val_num_of_batch = config.val_num_of_batch,
save_and_sample_every = config.save_and_sample_every,
ema_decay = config.ema_decay,
amp = config.amp,
split_batches = config.split_batches,
eval_folder = os.path.join(config.eval_folder, f"{config.model_name}/"),
results_folder = os.path.join(config.results_folder, f"{config.model_name}/"),
config = config
)
trainer.train()
if __name__ == "__main__":
print(config)
main()