-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_square.py
213 lines (160 loc) · 5.65 KB
/
plot_square.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import matplotlib.pyplot as plt
from skspatial.objects import Points, Line
from skspatial.plotting import plot_3d, plot_2d
import mpl_toolkits.mplot3d.axes3d as p3
from collections import deque
import argparse
import math
import numpy as np
import matplotlib.pyplot as plt
#!/usr/bin/python3
# Author: Maj Stenmark
# Preparation:
# Run the log_in_video.py to generate the log file
# Script description:
# Plots the position in 3D during an interval of given number of frames.
# Input arguments:
# log: log file with the position data.
# interval_size: no of frames to show.
# Output:
# Plots positions in 3D.
seq = [3428, 3497, 3565,3634, 3702, 3770, 3838, 3907, 3970, 4043, 4111, 4180, 4248, 4316, 4384, 4454, 4521, 4589, 4658, 4727, 4795, 4862, 4931, 5000, 5067, 5135, 5204, 5272, 5340, 5409, 5477, 5546, 5614, 5681, 5750, 5819, 5886, 4862, 4931, 5000, 5067, 5135, 5204, 5272, 5340, 5409, 5477, 5546, 5614, 5681, 5750, 5819, 5886, 5955, 6023, 6091]
seq2 = [10167,10370,10570,10772,10972,11172,11375,11576,11776,11978,12178,12381,12581,12783,12985,13187,13386,13588,13789,13991,14191,14392,14594,14796,14996,15197,15399,15599,15802,16000,16203,16405,16605,16807,17007,17208,17409,17611,17812,18012]
#intervals = [[3428, 6091],
# [7013, 9676],
# [10167, 18013],
# [19208, 27073]]
intervals = [seq]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('-l', '--log', required=True, action='store', default='.', help="log file")
#parser.add_argument('-sz', '--interval_size', required=True, action='store', default='250', help="number of frames in interval")
return parser.parse_args()
def readlog2(log):
cent_pos = []
frames = []
no_markers = []
# Define the codec and create VideoWriter object
with open(log, 'r+') as logfile:
lines = logfile.readlines()
for line in lines:
no, x, y, z, nom = map(float, line.split())
pos = [x, y, z]
cent_pos.append(pos)
frames.append(no)
no_markers.append(int(nom)//4)
return cent_pos, frames, no_markers
def getside(frameno, intervals):
for seq in intervals:
for i in range(len(seq) -1):
a = seq[i]
b = seq[i+1]
if a <= frameno <= b:
return i%4
return -1
args = get_args()
logfile = args.log
#interval_size = int(args.interval_size)
positions, frames, no_markers = readlog2(logfile)
cnt = 0
for i, n in enumerate(no_markers):
side = getside(frames[i], intervals)
if side > -1 and n >= 1:
cnt += 1
print(f'Number of data points with 1+ marker(s) {cnt}')
sides = []
for i in range(4):
sides.append([[], [], []])
#print(len(positions))
for i, pos in enumerate(positions):
frameno = frames[i]
no = no_markers[i]
if no >=1:
side = getside(frameno, intervals)
if side > -1:
sides[side][0].append(pos[0])
sides[side][1].append(pos[1])
sides[side][2].append(pos[2])
def plotdata(pos, _2d = False):
xlim = [0, 0]
ylim = [0, 0]
zlim = [0, 0]
for index, pos in enumerate(positions):
tvec = pos
for coord, lim in zip(tvec, [xlim, ylim, zlim]):
lim[0] = min(lim[0], coord)
lim[1] = max(lim[1], coord)
# Attaching 3D axis to the figure
fig = plt.figure()
colors = ['r', 'orange', 'g', 'b']
# Setting the axes properties
if _2d:
ax=fig.add_axes([0,0,1,1])
ax.set_title('2D Plot')
for i in range(4):
x, y, z = sides[i]
ax.scatter(x, y,color = colors[i], alpha=0.4)
ax.set_xlabel('X')
ax.set_ylabel('Y')
else:
ax3d = plt.axes(projection='3d')
ax3d.set_title('3D Plot')
for i in range(4):
x, y, z = sides[i]
ax3d.scatter3D(x, y, z,color = colors[i], alpha=0.4)
'''
ax3d.set_xlim(xlim[0], xlim[1])
ax3d.set_ylim(ylim[0], ylim[1])
ax3d.set_zlim(zlim[0], zlim[1])
'''
ax3d.set_xlabel('X')
ax3d.set_ylabel('Y')
ax3d.set_zlabel('Z')
plt.show()
def fitdata(points):
line_fit = Line.best_fit(points)
errs = []
for pt in points:
d = line_fit.distance_point(pt)
errs.append(d)
return errs
def printerrors(title, errs2d, errs3d):
means2d = []
means3d = []
scale = 1.1 #the image is scaled
scalefactor = 1/scale
mx2d = 0
mx3d = 0
mx2d = max(errs2d)
mean2d = sum(errs2d)/len(errs2d)
mx3d = max(errs3d)
mean3d = sum(errs3d)/len(errs3d)
# We can set the number of bins with the `bins` kwarg
print('{}: Values 2D mean distance {:.4f} mm'.format(title, scalefactor * mean2d))
print('Max 2D {}'.format(mx2d))
print('{}: Values 3D mean distance {:.4f} mm'.format(title, scalefactor * mean3d))
print('Max 3D {}'.format(mx3d))
fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True)
n_bins = 20
# We can set the number of bins with the `bins` kwarg
axs[0].hist(errs2d, bins=n_bins)
axs[1].hist(errs3d, bins=n_bins)
plt.show()
def to_points(pos):
x, y, z = pos
reorder = sorted(range(len(x)), key = lambda ii: x[ii])
coords = [[x[ii], y[ii], z[ii]] for ii in reorder]
coord2d = [[x[ii], y[ii]] for ii in reorder]
return coords, coord2d
errs3d_tot = []
errs2d_tot = []
plotdata(positions, _2d = False)
for i in range(4):
pos = sides[i]
coords3d, coords2d = to_points(pos)
err3d = fitdata(coords3d)
err2d = fitdata(coords2d)
errs3d_tot.extend(err3d)
errs2d_tot.extend(err2d)
printerrors("Yumi stereo", errs3d_tot, errs2d_tot)