Skip to content

Latest commit

 

History

History
65 lines (38 loc) · 3.29 KB

README.md

File metadata and controls

65 lines (38 loc) · 3.29 KB

Using reinforcement learning to train an autonomous vehicle to avoid obstacles

NOTE: If you're coming here from parts 1 or 2 of the Medium posts, you want to visit the releases section and check out version 1.0.0, as the code has evolved passed that.

This is a hobby project I created to learn the basics of reinforcement learning. It uses Python3, Pygame, Pymunk, Keras and Theanos. It employes a Q-learning (unsupervised) algorithm to learn how to move an object around a screen (drive itself) without running into obstacles.

The purpose of this project is to eventually use the learnings from the game to operate a real-life remote-control car, using distance sensors.

This version of the code attempts to simulate the use of sensors to get us a step closer to being able to use this in the real world.

Full writeups that pertain to version 1.0.0 can be found here:

Part 1: https://medium.com/@harvitronix/using-reinforcement-learning-in-python-to-teach-a-virtual-car-to-avoid-obstacles-6e782cc7d4c6

Part 2: https://medium.com/@harvitronix/reinforcement-learning-in-python-to-teach-a-virtual-car-to-avoid-obstacles-part-2-93e614fcd238#.vbakopk4o

Part 3 (for this version of the code): https://medium.com/@harvitronix/reinforcement-learning-in-python-to-teach-an-rc-car-to-avoid-obstacles-part-3-a1d063ac962f

To run for your first time

Installing

  1. Clone this repo
  2. Install numpy pip3 install numpy
  3. Install Pygame. I used these instructions: http://askubuntu.com/questions/401342/how-to-download-pygame-in-python3-3 but with pip3 install hg+http://bitbucket.org/pygame/pygame after I installed the dependencies
  4. Install pymunk pip3 install pymunk
  5. Update pymunk to python3 by CDing into its directory and running 2to3 -w *.py
  6. Install Keras pip3 install keras
  7. Upgrade Theanos pip3 install git+git://github.com/Theano/Theano.git --upgrade --no-deps
  8. Install h5py for saving models pip3 install h5py

Training

First, you need to train a model. This will save weights to the saved-models folder. You may need to create this folder before running. You can train the model by running:

python3 learning.py

It can take anywhere from an hour to 36 hours to train a model, depending on the complexity of the network and the size of your sample. However, it will spit out weights every 25,000 frames, so you can move on to the next step in much less time.

Playing

Edit the nn.py file to change the path name for the model you want to load. Sorry about this, I know it should be a command line argument.

Then, watch the car drive itself around the obstacles!

python3 playing.py

That's all there is to it.

plotting

Once you have a bunch of CSV files created via the learning, you can convert those into graphs by running:

python3 plotting.py

This will also spit out a bunch of loss and distance averages at the different parameters.

Credits

I'm grateful to the following people and the work they did that helped me learn how to do this: