forked from matsui528/sis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
server.py
42 lines (34 loc) · 1.27 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import numpy as np
from PIL import Image
from feature_extractor import FeatureExtractor
import glob
import pickle
from datetime import datetime
from flask import Flask, request, render_template
app = Flask(__name__)
# Read image features
fe = FeatureExtractor()
features = []
img_paths = []
for feature_path in glob.glob("static/feature/*"):
features.append(pickle.load(open(feature_path, 'rb')))
img_paths.append('static/img/' + os.path.splitext(os.path.basename(feature_path))[0] + '.jpg')
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
file = request.files['query_img']
img = Image.open(file.stream) # PIL image
uploaded_img_path = "static/uploaded/" + datetime.now().isoformat() + "_" + file.filename
img.save(uploaded_img_path)
query = fe.extract(img)
dists = np.linalg.norm(features - query, axis=1) # Do search
ids = np.argsort(dists)[:30] # Top 30 results
scores = [(dists[id], img_paths[id]) for id in ids]
return render_template('index.html',
query_path=uploaded_img_path,
scores=scores)
else:
return render_template('index.html')
if __name__=="__main__":
app.run("0.0.0.0")