-
Notifications
You must be signed in to change notification settings - Fork 2
/
timeloop_env.py
504 lines (455 loc) · 23.4 KB
/
timeloop_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import logging
import numpy as np
import yaml
import os, sys
import copy
from subprocess import Popen, PIPE, call
from parse_timeloop_output import parse_timeloop_stats
from pytimeloop.app import Model
from pytimeloop import ConfigDict
from utils import *
import re
class TimeloopEnv(object):
def __init__(self, config_path='./out_config', in_config_dir= './in_config', debug=False, use_sparse=False, density=None):
self.config_path = config_path
self.use_sparse = use_sparse
with open(os.path.join(in_config_dir, 'arch.yaml'), 'r') as fd:
self.arch = yaml.load(fd, Loader = yaml.SafeLoader)
with open(os.path.join(in_config_dir, 'problem.yaml'), 'r') as fd:
self.problem = yaml.load(fd,Loader = yaml.SafeLoader)
if self.use_sparse:
with open(os.path.join(in_config_dir, 'sparse.yaml'), 'r') as fd:
self.sparse = yaml.load(fd,Loader = yaml.SafeLoader)
buffer_name_list, buffer_size_list, buffer_spmap_cstr, user_specified_spmaps, num_buffer_levels, num_pes = self.get_buffer_info()
self.buffer_name_list = buffer_name_list
self.buffer_size_list = buffer_size_list
self.buffer_spmap_cstr = buffer_spmap_cstr
self.user_specified_spmaps = user_specified_spmaps
self.buffers_with_spmap = set([key for key, value in self.buffer_spmap_cstr.items() if value > 1])
self.num_buffer_level = num_buffer_levels
self.num_pes = num_pes
self._executable = 'timeloop-model'
self.debug = debug
self.buf_energy_cost = self.get_default_buffer_energy_cost()
self.density = density
def get_default_buffer_energy_cost(self):
buf_energy_cost = {'DRAM': 200,
'l2': 2.2,
'l1': 1.12,
'MAC': 1.0,
}
return buf_energy_cost
def get_num_buffer_levels(self):
return self.num_buffer_level
def get_buffer_spmap_cstr(self):
return self.buffer_spmap_cstr
def get_buffers_with_spmap(self):
return self.buffers_with_spmap
def get_problem_info(self):
dim_note = 'NKCYXRS'
problem = copy.deepcopy(self.problem)
dimension = []
dimension_dicts = {}
for key in dim_note:
value = problem['problem']['instance'][self.get_timeloop_notation(key)]
dimension.append(value)
dimension_dicts[key] = value
return dimension, dimension_dicts
def get_buffer_info(self):
arch = copy.deepcopy(self.arch)
num_instances = []
buffer_name_list = []
buffer_size_list = []
num_buffer_levels = 0
user_specified_spmaps = []
arch = arch['architecture']
num_pe = 0
while 1:
try:
user_specified_spmap = False
instances = 1
arch = arch['subtree'][0]
attrubutes = arch['local'][0]['attributes']
depth = attrubutes['depth'] if 'depth' in attrubutes else float('Inf')
word_bits = attrubutes['word-bits'] if 'word-bits' in attrubutes else 8
width = attrubutes['width'] if 'width' in attrubutes else 8
buffer_size = depth * width / word_bits
buffer_name = arch['local'][0]['name']
macc = arch['local'][1]['name'] if len(arch['local'])>1 else None
re_ret = re.search('.*\[', buffer_name)
if re_ret:
instances = int(buffer_name.split('..')[1].split(']')[0]) + 1
buffer_name = re_ret.group(0)[:-1]
user_specified_spmap = True
buffer_name_list.append(buffer_name)
buffer_size_list.append(buffer_size)
num_instances.append(instances)
user_specified_spmaps.append(user_specified_spmap)
num_buffer_levels += 1
except:
instances = int(macc.split('..')[1].split(']')[0]) + 1
num_pe = instances
num_instances.append(instances)
break
sp_cstr = []
for i in range(len(num_instances)-1):
allowed_sp_size = num_instances[i+1]//num_instances[i]
sp_cstr.append(allowed_sp_size)
if num_instances[i+1] % num_instances[i] !=0:
raise ValueError('Invalid Architecture File. '
'Buffer hierarchy not perfectly divisible.')
user_specified_spmaps.pop(0)
user_specified_spmaps.append(False)
return {f'l{level}': name for level, name in zip(np.arange(num_buffer_levels, 0, -1), buffer_name_list)}, \
{f'l{level}': name for level, name in zip(np.arange(num_buffer_levels, 0, -1), buffer_size_list)}, \
{f'l{level}': name for level, name in zip(np.arange(num_buffer_levels, 0, -1), sp_cstr)}, \
set([f'l{level}' for level, user_sp in zip(np.arange(num_buffer_levels, 0, -1), user_specified_spmaps) if user_sp]), \
num_buffer_levels, \
num_pe
def get_timeloop_notation(self, g):
timeloop_dict = {'N': 'N', 'K': 'M', 'C': 'C', 'Y': 'P', 'X': 'Q', 'R': 'R', 'S': 'S'}
return timeloop_dict[g]
def get_gamma_notation(self, t):
gamma_dict = {'N': 'N','M': 'K','C': 'C','P': 'Y','Q': 'X','R': 'R','S': 'S'}
return gamma_dict[t]
def get_dimension_dict(self, dim_value):
dim_note = 'NKCYXRS'
return {note: value for note, value in zip(dim_note, dim_value)}
def init_tp_tile_size(self):
series = [f'{self.get_timeloop_notation(note)}={1}' for note in 'NKCYXRS']
return ' '.join(series)
def get_tp_tile_size(self, dim_value):
series = [f'{self.get_timeloop_notation(note)}={value}' for note, value in dim_value.items()]
return ' '.join(series)
def get_tp_sp_tile_size(self, dim_value, sp_dim, timeloop_notation=True):
if timeloop_notation:
temporal_series = [f'{self.get_timeloop_notation(note)}={value if note not in sp_dim else 1}' for note, value in dim_value.items()]
spatial_series = [f'{self.get_timeloop_notation(note)}={value if note in sp_dim else 1}' for note, value in dim_value.items()]
return ' '.join(temporal_series), ' '.join(spatial_series)
else:
temporal_series = [dim_value[note] if note not in sp_dim else 1 for note in 'NKCYXRS']
spatial_series = [dim_value[note] if note in sp_dim else 1 for note in 'NKCYXRS']
return np.array(temporal_series), np.array(spatial_series)
def get_loop_order(self, loop_order):
series = [self.get_timeloop_notation(g) for g in loop_order]
return ''.join(series)
def get_implicit_l3_tile_size(self, dim_value, l2_tile_size, l1_tile_size):
l3_tile_size = [int(d/(l2*l1)) for d, l2, l1 in zip(dim_value, l2_tile_size, l1_tile_size)]
l3_tile_size_mode = [d%(l2*l1) for d, l2, l1 in zip(dim_value, l2_tile_size, l1_tile_size)]
if np.sum(l3_tile_size_mode) == 0:
return l3_tile_size
else:
print('Tile size not divisible')
return None
def create_pool_env(self, num_pools, dimension, indv, use_IO=False):
os.makedirs(self.config_path, exist_ok=True)
if use_IO:
arch_paths, problem_paths, map_paths, sparse_paths, pool_paths = [], [], [], [], []
for i in range(num_pools):
pool_dir = os.path.join(self.config_path, f'pool-{i}')
os.makedirs(pool_dir, exist_ok=True)
pool_paths.append(pool_dir)
arch_paths.append(os.path.abspath(os.path.join(pool_dir, 'arch.yaml')))
problem_paths.append(os.path.abspath(os.path.join(pool_dir, 'problem.yaml')))
map_paths.append(os.path.abspath(os.path.join(pool_dir, 'map.yaml')))
sparse_paths.append(os.path.abspath(os.path.join(pool_dir, 'sparse.yaml')))
self.arch_path, self.problem_path, self.map_path, self.sparse_path, self.pool_path = arch_paths, problem_paths, map_paths, sparse_paths, pool_paths
else:
arch, problem, map = self.get_configs(dimension, indv)
cfg = {}
cfg.update(arch)
cfg.update(map)
cfg.update(problem)
if self.use_sparse:
cfg.update(self.sparse)
# cfg.update({'sparse_optimizations': self.sparse})
config = ConfigDict(cfg)
with stdout_redirected():
timeloop_app = Model(config, self.config_path)
with open(os.path.join(self.config_path, 'timeloop-model.ART.yaml'), 'r') as fd:
art = yaml.load(fd, Loader = yaml.SafeLoader)
with open(os.path.join(self.config_path, 'timeloop-model.ERT.yaml'), 'r') as fd:
ert = yaml.load(fd, Loader = yaml.SafeLoader)
cfg.update(art)
cfg.update(ert)
self.art = art
self.ert = ert
self.shared_cfg = cfg
def get_arch_configs(self, l2_size, l1_size, num_pes):
arch = copy.deepcopy(self.arch)
arch['architecture']['subtree'][0]['subtree'][0]['local'][0]['attributes']['depth'] = l2_size
arch['architecture']['subtree'][0]['subtree'][0]['subtree'][0]['local'][0]['name']=f'RegisterFile[0..{num_pes}]'
arch['architecture']['subtree'][0]['subtree'][0]['subtree'][0]['local'][0]['attributes']['depth'] = l1_size
arch['architecture']['subtree'][0]['subtree'][0]['subtree'][0]['local'][1]['name']=f'MACC[0..{num_pes}]'
return arch
def get_problem_configs(self, dimension):
problem = copy.deepcopy(self.problem)
dimension_dict = self.get_dimension_dict(dimension)
for key, value in dimension_dict.items():
problem['problem']['instance'][self.get_timeloop_notation(key)] = value
if self.use_sparse:
problem['problem']['instance']['densities'] = {}
for key in ['Inputs', 'Weights', 'Outputs']:
cur_density = self.density[key]
if cur_density < 1:
problem['problem']['instance']['densities'][key] = {}
problem['problem']['instance']['densities'][key]['distribution'] = 'fixed-structured'
# problem['problem']['instance']['densities'][key]['distribution'] = 'hypergeometric'
problem['problem']['instance']['densities'][key]['density'] = cur_density
return problem
def get_prod(self, dicts):
ret_value = 1
for k, v in dicts.items():
ret_value *= ((int(k))**v)
return ret_value
def get_bypass(self, bypass):
to_pass = [k for k, v in bypass.items() if v]
to_keep = [k for k, v in bypass.items() if not v]
return to_pass, to_keep
def get_input_weight_output_tile(self, tiles):
N, K, C, Y, X, R, S = tiles
input_tile, weight_tile, output_tile = N*(Y+R-1)*(X+S-1)*C, K*R*S*C, Y*X*K*N
return input_tile, weight_tile, output_tile
def get_ideal_perf(self, dimension):
N, K, C, Y, X, R, S = dimension
input_size, weight_size, output_size = [N*Y*X*C, R*S*C*K, N*Y*X*K] # Input, weight, output
num_flops = N*R*S*C*Y*X*K
energys = {}
for level in range(1, self.num_buffer_level+1):
if level == 1:
buf_energy_cost = self.buf_energy_cost['l1']
elif level == self.num_buffer_level:
buf_energy_cost = self.buf_energy_cost['DRAM']
else:
buf_energy_cost = self.buf_energy_cost['l2']
energys[f'l{level}-Inputs'] = input_size * buf_energy_cost
energys[f'l{level}-Weights'] = weight_size * buf_energy_cost
energys[f'l{level}-Outputs'] = output_size * buf_energy_cost
energys['compute'] = num_flops * self.buf_energy_cost['MAC']
energy = sum(e for e in energys.values()) * 1e-6 # energy_uJ
# cycles = num_flops/self.num_pes
cycles = num_flops/(self.num_pes-1)
edp = cycles * energy
return edp, cycles, energy
def check_tile_fit_buffer(self, indv):
len_dim = len('NKCYXRS')
tile_prods = {}
tile_prod = np.ones((len_dim,))
for level in range(1, self.num_buffer_level):
tile_sizes = {dim_note:self.get_prod(values) for dim_note, values in indv[f'l{level}']['tile_size'].items()}
par_dims = indv[f'l{level}']['par_dims']
tp_tile_sizes, sp_tile_sizes = self.get_tp_sp_tile_size(tile_sizes, par_dims, timeloop_notation=False)
tile_prod = (tile_prod * tp_tile_sizes * sp_tile_sizes)
tile_prods[f'l{level}'] = tile_prod
for level in range(1, self.num_buffer_level):
input_tile, weight_tile, output_tile = self.get_input_weight_output_tile(tile_prods[f'l{level}'])
total_tile = 0
total_tile += input_tile if indv[f'l{level}']['bypass']['Inputs'] is False else 0
total_tile += weight_tile if indv[f'l{level}']['bypass']['Weights'] is False else 0
total_tile += output_tile if indv[f'l{level}']['bypass']['Outputs'] is False else 0
if total_tile > self.buffer_size_list[f'l{level}']:
return False
return True
def get_tile_buf_size(self, indv):
len_dim = len('NKCYXRS')
tile_prods = {}
tile_prod = np.ones((len_dim,))
for level in range(1, self.num_buffer_level+1):
tile_sizes = {dim_note:self.get_prod(values) for dim_note, values in indv[f'l{level}']['tile_size'].items()}
par_dims = indv[f'l{level}']['par_dims']
tp_tile_sizes, sp_tile_sizes = self.get_tp_sp_tile_size(tile_sizes, par_dims, timeloop_notation=False)
tile_prod = (tile_prod * tp_tile_sizes * sp_tile_sizes)
tile_prods[f'l{level}'] = tile_prod
ret = {}
for level in range(1, self.num_buffer_level+1):
input_tile, weight_tile, output_tile = self.get_input_weight_output_tile(tile_prods[f'l{level}'])
total_tile = input_tile + weight_tile + output_tile
ret[f'l{level}'] = {'Inputs': input_tile,
'Weights': weight_tile,
'Outputs':output_tile,
'Total':total_tile}
# total_tile = 0
# total_tile += input_tile if indv[f'l{level}']['bypass']['Inputs'] is False else 0
# total_tile += weight_tile if indv[f'l{level}']['bypass']['Weights'] is False else 0
# total_tile += output_tile if indv[f'l{level}']['bypass']['Outputs'] is False else 0
# # total_tile = input_tile + weight_tile + output_tile
# # print(f'Level-{level}: {total_tile}, {self.buffer_size_list[f"l{level}"]}')
# ret[f'l{level}'] = total_tile
return ret
def check_tile_fit_buffer_temp(self, indv):
len_dim = len('NKCYXRS')
tile_prods = {}
tile_prod = np.ones((len_dim,))
for level in range(1, self.num_buffer_level+1):
tile_sizes = {dim_note:self.get_prod(values) for dim_note, values in indv[f'l{level}']['tile_size'].items()}
par_dims = indv[f'l{level}']['par_dims']
tp_tile_sizes, sp_tile_sizes = self.get_tp_sp_tile_size(tile_sizes, par_dims, timeloop_notation=False)
tile_prod = (tile_prod * tp_tile_sizes * sp_tile_sizes)
tile_prods[f'l{level}'] = tile_prod
ret = {}
for level in range(1, self.num_buffer_level+1):
input_tile, weight_tile, output_tile = self.get_input_weight_output_tile(tile_prods[f'l{level}'])
total_tile = 0
total_tile += input_tile if indv[f'l{level}']['bypass']['Inputs'] is False else 0
total_tile += weight_tile if indv[f'l{level}']['bypass']['Weights'] is False else 0
total_tile += output_tile if indv[f'l{level}']['bypass']['Outputs'] is False else 0
# total_tile = input_tile + weight_tile + output_tile
# print(f'Level-{level}: {total_tile}, {self.buffer_size_list[f"l{level}"]}')
ret[f'l{level}'] = total_tile
return ret
def get_map_config(self, indv):
mapping = []
for level in range(1, self.num_buffer_level+1):
target = self.buffer_name_list[f'l{level}']
permutation = self.get_loop_order(indv[f'l{level}']['loop_order'])
tile_sizes = {dim_note:self.get_prod(values) for dim_note, values in indv[f'l{level}']['tile_size'].items()}
par_dims = indv[f'l{level}']['par_dims']
bypass = indv[f'l{level}']['bypass']
to_pass, to_keep = self.get_bypass(bypass)
bypass_map = {'target': target,
'type': 'bypass',
'keep': to_keep,
'bypass': to_pass
}
# if 1<level<self.num_buffer_level:
tp_tile_sizes, sp_tile_sizes = self.get_tp_sp_tile_size(tile_sizes, par_dims)
cur_map = {'target': target,
'type': 'temporal',
'factors': tp_tile_sizes,
'permutation': permutation,
}
mapping.append(cur_map)
if f'l{level}' in self.buffers_with_spmap:
cur_map = {'target': target,
'type': 'spatial',
'factors': sp_tile_sizes,
'permutation': permutation,
}
mapping.append(cur_map)
mapping.append(bypass_map)
# else:
# tp_tile_sizes = self.get_tp_tile_size(tile_sizes)
# cur_map = {'target': target,
# 'type': 'temporal',
# 'factors': tp_tile_sizes,
# 'permutation': permutation,
# }
# mapping.append(cur_map)
return {'mapping': mapping}
def get_configs(self, dimension, indv,):
arch = self.arch
problem = self.get_problem_configs(dimension)
map = self.get_map_config(indv)
return arch, problem, map
def write_config(self, arch, problem, map, arch_path, problem_path, map_path, sparse_path=None):
with open(arch_path, 'w') as fd:
yaml.dump(arch, fd)
with open(problem_path, 'w') as fd:
yaml.dump(problem, fd)
with open(map_path, 'w') as fd:
yaml.dump(map, fd)
if self.use_sparse:
with open(sparse_path, 'w') as fd:
yaml.dump(self.sparse, fd)
def dump_timeloop_config_files(self, dimension, indv, out_dir):
arch, problem, map = self.get_configs(dimension, indv)
self.write_config(arch, problem, map, arch_path=os.path.join(out_dir, 'arch.yaml'),
problem_path=os.path.join(out_dir, 'problem.yaml'), map_path=os.path.join(out_dir, 'map.yaml'),
sparse_path=os.path.join(out_dir, 'sparse.yaml'),)
def run_timeloop(self, dimension, indv,
pool_idx=0, use_IO=False, fitness_obj=['latency']):
arch, problem, map = self.get_configs(dimension, indv)
if use_IO:
self.write_config(arch, problem, map, arch_path=self.arch_path[pool_idx],
problem_path=self.problem_path[pool_idx], map_path=self.map_path[pool_idx], sparse_path=self.sparse_path[pool_idx])
command = [self._executable, self.arch_path[pool_idx], self.problem_path[pool_idx], self.map_path[pool_idx]]
if self.use_sparse:
command += [self.sparse_path[pool_idx]]
process = Popen(command, stdout=PIPE, stderr=PIPE, cwd=self.pool_path[pool_idx])
stdout, stderr = process.communicate()
process.wait()
if stderr:
return [-float('Inf')] * len(fitness_obj)
else:
try:
# stats = parse_timeloop_stats(self.pool_path[pool_idx])
stats = extract_timeloop_perf(self.pool_path[pool_idx])
fitness = self.judge_IO(stats, fitness_obj)
except:
fitness = [-float('Inf')] * len(fitness_obj)
return fitness
else:
# cfg = {}
# cfg.update(arch)
# cfg.update(map)
# cfg.update(problem)
# cfg.update(self.art)
# cfg.update(self.ert)
cfg = copy.deepcopy(self.shared_cfg)
cfg.update(map)
config = ConfigDict(cfg)
if not self.debug:
with stdout_redirected():
try:
timeloop_app = Model(config,'.')
eval_stats = timeloop_app.run()
fitness = self.judge(eval_stats, fitness_obj)
except:
fitness = [-float('Inf')] * len(fitness_obj)
else:
print(indv)
self.dump_timeloop_config_files(dimension, indv, './report/')
timeloop_app = Model(config,'.')
eval_stats = timeloop_app.run()
fitness = self.judge(eval_stats, fitness_obj)
print(fitness)
return fitness
def judge_IO(self, stats, fitness_obj='all'):
if fitness_obj == 'all':
fitness_obj = ['edp', 'latency', 'energy', 'utilization']
ret = []
for f in fitness_obj:
if f == 'edp':
ret.append(-stats['cycles'] * stats['energy_pJ'] * 1E-6) # energy_uJ
if f == 'latency':
ret.append(-stats['cycles'])
if f == 'utilization':
ret.append(stats['utilization'])
if f == 'energy':
ret.append(-stats['energy_pJ'] * 1E-6) # energy_uJ
return ret
def judge(self, stats, fitness_obj='all'):
if fitness_obj == 'all':
return self.get_stats(stats)
ret = []
for f in fitness_obj:
if f == 'edp':
ret.append(-stats.cycles * stats.energy * 1E-6) # energy_uJ
if f == 'latency':
ret.append(-stats.cycles)
if f == 'area':
ret.append(-stats.area)
if f == 'utilization':
ret.append(-stats.utilization)
if f == 'energy':
ret.append(-stats.energy * 1E-6) # energy_uJ
return ret
def get_stats(self, stats):
return [stats.cycles * stats.energy * 1E-6, stats.cycles, stats.energy * 1E-6, stats.utilization, stats.energy/stats.algorithmic_compute, stats.energy/stats.actual_compute, stats.area * 1E-6]
if __name__ == '__main__':
l2_size = 2**14
l1_size = 2**12
num_pes = 64
dimension = [32, 32, 16, 16, 3, 3]
K,C,Y,X,R,S = dimension
l2_tile_size = [8, 8, 2, 2, 3, 3]
l1_tile_size = [4, 4, 8, 8, 1, 1]
l2_loop_order = 'KCYXRS'
l1_loop_order = 'YXKCRS'
par_dims = 'KC'
config_path = '/home/felix/Documents/my_code/timeloop-accelergy-exercises/workspace/exercises/2020.ispass/timeloop/04-model-conv1d+oc-3levelspatial/config'
# timeloop = TimeloopEnv(config_path)
# timeloop.create_timeloop_config(dimension, l2_size, l1_size, num_pes, l2_tile_size, l1_tile_size, l2_loop_order, l1_loop_order, par_dims)
timeloop = TimeloopEnv()
timeloop.create_timeloop_config(dimension, l2_size, l1_size, num_pes, l2_tile_size, l1_tile_size, l2_loop_order, l1_loop_order, par_dims)
timeloop.run_timeloop()