diff --git a/examples/learn_julia/krige.jl b/examples/learn_julia/krige.jl index eb666fe2..2d064afa 100644 --- a/examples/learn_julia/krige.jl +++ b/examples/learn_julia/krige.jl @@ -24,7 +24,7 @@ for i in 1:n end end -Gadfly.plot(Gadfly.layer(z=k, x=x, y=y, Gadfly.Geom.contour(levels=collect(range(minimum(k); stop=maximum(k), length=51))), Gadfly.layer(x=X[1,:], y=X[2,:], Geom.point, Gadfly.Theme(default_color=parse(Colors.Colorant, "red"), point_size=4pt))) +Gadfly.plot(Gadfly.layer(z=k, x=x, y=y, Gadfly.Geom.contour(levels=collect(range(minimum(k); stop=maximum(k), length=51)))), Gadfly.layer(x=X[1,:], y=X[2,:], Geom.point, Gadfly.Theme(default_color=parse(Colors.Colorant, "red"), point_size=4pt))) fig = PyPlot.figure(figsize=(8, 6)) ax = fig.gca(projection="3d") diff --git a/examples/model_analysis/bayes.jl b/examples/model_analysis/bayes.jl index 65ea937c..f5c42c71 100644 --- a/examples/model_analysis/bayes.jl +++ b/examples/model_analysis/bayes.jl @@ -9,5 +9,5 @@ mcmcchain = Mads.bayessampling(md; nsteps=1000000, burnin=1000, thinning=1000, s Mads.scatterplotsamples(md, permutedims(mcmcchain.value), joinpath("bayes_results", "bayes_scatter.png")) Mads.display(joinpath("bayes_results", "bayes_scatter.png")) o = Mads.forward(md, mcmcchain.value) -Mads.spaghettiplot(md, o, filename=joinpath("bayes_results" "bayes_spaghetti.png")) +Mads.spaghettiplot(md, o, filename=joinpath("bayes_results", "bayes_spaghetti.png")) Mads.display(joinpath("bayes_results", "bayes_spaghetti.png")) \ No newline at end of file diff --git a/examples/ode/ode-driver.jl b/examples/ode/ode-driver.jl index fcded8e2..d11088f8 100644 --- a/examples/ode/ode-driver.jl +++ b/examples/ode/ode-driver.jl @@ -19,7 +19,7 @@ function madsmodelrun(parameters::AbstractDict) times = collect(0:.1:100) initialconditions = [1.,0.] t, y = ODE.ode23s(funcosc, initialconditions, times; points=:specified) - ys = permutedims(hcat(y...) # vectorize the output and transpose with + ys = permutedims(hcat(y...)) # vectorize the output and transpose with predictions = OrderedCollections.OrderedDict{String, Float64}(zip(map(i -> string("o", i), times), ys[:,1])) return predictions end