diff --git a/src/MadsSensitivityAnalysis.jl b/src/MadsSensitivityAnalysis.jl index 97c1cb93..c37affd7 100644 --- a/src/MadsSensitivityAnalysis.jl +++ b/src/MadsSensitivityAnalysis.jl @@ -33,7 +33,7 @@ function makelocalsafunction(madsdata::AbstractDict; multiplycenterbyweights::Bo initparams = Mads.getparamdict(madsdata) function f_sa(arrayparameters::AbstractVector) parameters = copy(initparams) - for i = eachindex(arrayparameters) + for i in eachindex(arrayparameters) parameters[optparamkeys[i]] = arrayparameters[i] end resultdict = f(parameters) @@ -54,7 +54,7 @@ function makelocalsafunction(madsdata::AbstractDict; multiplycenterbyweights::Bo dx = lineardx end p = Vector{Float64}[] - for i in 1:nP + for i = 1:nP a = copy(arrayparameters) a[i] += dx[i] push!(p, a) @@ -78,14 +78,14 @@ function makelocalsafunction(madsdata::AbstractDict; multiplycenterbyweights::Bo return nothing end if !center_computed - center = fevals[nP+1] + center = fevals[nP + 1] if restartdir != "" ReusableFunctions.saveresultfile(restartdir, center, arrayparameters) end end jacobian = Array{Float64}(undef, nO, nP) - for j in 1:nO - for i in 1:nP + for j = 1:nO + for i = 1:nP jacobian[j, i] = (fevals[i][j] - center[j]) / dx[i] end end @@ -107,14 +107,14 @@ Local sensitivity analysis based on eigen analysis of the parameter covariance m $(DocumentFunction.documentfunction(localsa; argtext=Dict("madsdata"=>"MADS problem dictionary"), keytext=Dict("sinspace"=>"apply sin transformation [default=`true`]", - "keyword"=>"keyword to be added in the filename root", - "filename"=>"output file name", - "format"=>"output plot format (`png`, `pdf`, etc.)", - "datafiles"=>"flag to write data files [default=`true`]", - "imagefiles"=>"flag to create image files [default=`Mads.graphoutput`]", - "par"=>"parameter set", - "obs"=>"observations for the parameter set", - "J"=>"Jacobian matrix"))) + "keyword"=>"keyword to be added in the filename root", + "filename"=>"output file name", + "format"=>"output plot format (`png`, `pdf`, etc.)", + "datafiles"=>"flag to write data files [default=`true`]", + "imagefiles"=>"flag to create image files [default=`Mads.graphoutput`]", + "par"=>"parameter set", + "obs"=>"observations for the parameter set", + "J"=>"Jacobian matrix"))) Dumps: @@ -165,9 +165,9 @@ function localsa(madsdata::AbstractDict; sinspace::Bool=true, keyword::AbstractS sinparam = asinetransform(param, lowerbounds, upperbounds, indexlogtransformed) sindx = Mads.getsindx(madsdata) g_sa_sin = Mads.sinetransformgradient(g_sa, lowerbounds, upperbounds, indexlogtransformed; sindx=sindx) - J = g_sa_sin(sinparam, center=obs) + J = g_sa_sin(sinparam; center=obs) else - J = g_sa(param, center=obs) + J = g_sa(param; center=obs) end end if isnothing(J) @@ -196,18 +196,15 @@ function localsa(madsdata::AbstractDict; sinspace::Bool=true, keyword::AbstractS datafiles && DelimitedFiles.writedlm("$(rootname)-jacobian.dat", [transposevector(["Obs"; paramkeys]); obskeys J]) mscale = max(abs(minimumnan(J)), abs(maximumnan(J))) if imagefiles - jacmat = Gadfly.spy(J, Gadfly.Scale.x_discrete(labels = i->plotlabels[i]), Gadfly.Scale.y_discrete(labels = i->obskeys[i]), - Gadfly.Guide.YLabel("Observations"), Gadfly.Guide.XLabel("Parameters"), - Gadfly.Theme(point_size=20Gadfly.pt, major_label_font_size=14Gadfly.pt, minor_label_font_size=12Gadfly.pt, key_title_font_size=16Gadfly.pt, key_label_font_size=12Gadfly.pt), - Gadfly.Scale.ContinuousColorScale(Gadfly.Scale.lab_gradient(Base.parse(Colors.Colorant, "green"), Base.parse(Colors.Colorant, "yellow"), Base.parse(Colors.Colorant, "red")), minvalue = -mscale, maxvalue = mscale)) + jacmat = Gadfly.spy(J, Gadfly.Scale.x_discrete(; labels=i -> plotlabels[i]), Gadfly.Scale.y_discrete(; labels=i -> obskeys[i]), Gadfly.Guide.YLabel("Observations"), Gadfly.Guide.XLabel("Parameters"), Gadfly.Theme(; point_size=20Gadfly.pt, major_label_font_size=14Gadfly.pt, minor_label_font_size=12Gadfly.pt, key_title_font_size=16Gadfly.pt, key_label_font_size=12Gadfly.pt), Gadfly.Scale.ContinuousColorScale(Gadfly.Scale.lab_gradient(Base.parse(Colors.Colorant, "green"), Base.parse(Colors.Colorant, "yellow"), Base.parse(Colors.Colorant, "red")); minvalue=-mscale, maxvalue=mscale)) filename = "$(rootname)-jacobian" * ext - plotfileformat(jacmat, filename, 3Gadfly.inch+0.25Gadfly.inch*nP, 3Gadfly.inch+0.25Gadfly.inch*nO; format=format, dpi=imagedpi) + plotfileformat(jacmat, filename, 3Gadfly.inch + 0.25Gadfly.inch * nP, 3Gadfly.inch + 0.25Gadfly.inch * nO; format=format, dpi=imagedpi) madsinfo("Jacobian matrix plot saved in $filename") end if sum(bad_params) == 0 JpJ = J' * J else - JpJ = J[:,.!bad_params]' * J[:,.!bad_params] + JpJ = J[:, .!bad_params]' * J[:, .!bad_params] end local covar try @@ -230,7 +227,7 @@ function localsa(madsdata::AbstractDict; sinspace::Bool=true, keyword::AbstractS if datafiles DelimitedFiles.writedlm("$(rootname)-covariance.dat", covar) f = open("$(rootname)-stddev.dat", "w") - for i in 1:nP + for i = 1:nP write(f, "$(string(paramkeys[i])) $(param[i]) $(stddev_full[i])\n") end close(f) @@ -243,43 +240,37 @@ function localsa(madsdata::AbstractDict; sinspace::Bool=true, keyword::AbstractS eigenv = abs.(eigenv) index = sortperm(eigenv) sortedeigenv = eigenv[index] - sortedeigenm = real(eigenm[:,index]) + sortedeigenm = real(eigenm[:, index]) datafiles && DelimitedFiles.writedlm("$(rootname)-eigenmatrix.dat", [paramkeys[.!bad_params] sortedeigenm]) datafiles && DelimitedFiles.writedlm("$(rootname)-eigenvalues.dat", sortedeigenv) if imagefiles - eigenmat = Gadfly.spy(sortedeigenm, Gadfly.Scale.y_discrete(labels = i->plotlabels[.!bad_params][i]), Gadfly.Scale.x_discrete, - Gadfly.Guide.YLabel("Parameters"), Gadfly.Guide.XLabel("Eigenvectors"), - Gadfly.Theme(point_size=20Gadfly.pt, major_label_font_size=14Gadfly.pt, minor_label_font_size=12Gadfly.pt, key_title_font_size=16Gadfly.pt, key_label_font_size=12Gadfly.pt), - Gadfly.Scale.ContinuousColorScale(Gadfly.Scale.lab_gradient(Base.parse(Colors.Colorant, "green"), Base.parse(Colors.Colorant, "yellow"), Base.parse(Colors.Colorant, "red")))) + eigenmat = Gadfly.spy(sortedeigenm, Gadfly.Scale.y_discrete(; labels=i -> plotlabels[.!bad_params][i]), Gadfly.Scale.x_discrete, Gadfly.Guide.YLabel("Parameters"), Gadfly.Guide.XLabel("Eigenvectors"), Gadfly.Theme(; point_size=20Gadfly.pt, major_label_font_size=14Gadfly.pt, minor_label_font_size=12Gadfly.pt, key_title_font_size=16Gadfly.pt, key_label_font_size=12Gadfly.pt), Gadfly.Scale.ContinuousColorScale(Gadfly.Scale.lab_gradient(Base.parse(Colors.Colorant, "green"), Base.parse(Colors.Colorant, "yellow"), Base.parse(Colors.Colorant, "red")))) # eigenval = plot(x=eachindex(sortedeigenv), y=sortedeigenv, Scale.x_discrete, Scale.y_log10, Geom.bar, Guide.YLabel("Eigenvalues"), Guide.XLabel("Eigenvectors")) filename = "$(rootname)-eigenmatrix" * ext - plotfileformat(eigenmat, filename, 4Gadfly.inch+0.25Gadfly.inch*nP, 4Gadfly.inch+0.25Gadfly.inch*nP; format=format, dpi=imagedpi) + plotfileformat(eigenmat, filename, 4Gadfly.inch + 0.25Gadfly.inch * nP, 4Gadfly.inch + 0.25Gadfly.inch * nP; format=format, dpi=imagedpi) madsinfo("Eigen matrix plot saved in $filename") - eigenval = Gadfly.plot(x=eachindex(sortedeigenv), y=sortedeigenv, Gadfly.Scale.x_discrete, Gadfly.Scale.y_log10, - Gadfly.Geom.line(), - Gadfly.Theme(line_width=4Gadfly.pt, major_label_font_size=14Gadfly.pt, minor_label_font_size=12Gadfly.pt, key_title_font_size=16Gadfly.pt, key_label_font_size=12Gadfly.pt), - Gadfly.Guide.YLabel("Eigenvalues"), Gadfly.Guide.XLabel("Eigenvectors")) + eigenval = Gadfly.plot(; x=eachindex(sortedeigenv), y=sortedeigenv, Gadfly.Scale.x_discrete, Gadfly.Scale.y_log10, Gadfly.Geom.line(), Gadfly.Theme(; line_width=4Gadfly.pt, major_label_font_size=14Gadfly.pt, minor_label_font_size=12Gadfly.pt, key_title_font_size=16Gadfly.pt, key_label_font_size=12Gadfly.pt), Gadfly.Guide.YLabel("Eigenvalues"), Gadfly.Guide.XLabel("Eigenvectors")) filename = "$(rootname)-eigenvalues" * ext - plotfileformat(eigenval, filename, 4Gadfly.inch+0.25Gadfly.inch*nP, 4Gadfly.inch; format=format, dpi=imagedpi) + plotfileformat(eigenval, filename, 4Gadfly.inch + 0.25Gadfly.inch * nP, 4Gadfly.inch; format=format, dpi=imagedpi) madsinfo("Eigen values plot saved in $filename") end - Dict("of"=>ofval, "jacobian"=>J, "covar"=>covar, "stddev"=>stddev_full, "eigenmatrix"=>sortedeigenm, "eigenvalues"=>sortedeigenv) + Dict("of" => ofval, "jacobian" => J, "covar" => covar, "stddev" => stddev_full, "eigenmatrix" => sortedeigenm, "eigenvalues" => sortedeigenv) end """ $(DocumentFunction.documentfunction(sampling; argtext=Dict("param"=>"Parameter vector", - "J"=>"Jacobian matrix", - "numsamples"=>"Number of samples"), + "J"=>"Jacobian matrix", + "numsamples"=>"Number of samples"), keytext=Dict("seed"=>"random esee [default=`0`]", - "scale"=>"data scaling [default=`1`]"))) + "scale"=>"data scaling [default=`1`]"))) Returns: - generated samples (vector or array) - vector of log-likelihoods """ -function sampling(param::AbstractVector, J::AbstractArray, numsamples::Number; seed::Integer=-1, rng::Union{Nothing,Random.AbstractRNG,DataType}=nothing, scale::Number=1) +function sampling(param::AbstractVector, J::AbstractArray, numsamples::Number; seed::Integer=-1, rng::Union{Nothing, Random.AbstractRNG, DataType}=nothing, scale::Number=1) u, d, v = LinearAlgebra.svd(J' * J) done = false vo = copy(v) @@ -306,7 +297,7 @@ function sampling(param::AbstractVector, J::AbstractArray, numsamples::Number; s madsinfo("Reduction in sampling directions ... (from $(numdirections) to $(numgooddirections))") Mads.setseed(seed; rng=rng) gooddsamples = Distributions.rand(Mads.rng, dist, numsamples) - llhoods = map(i->Distributions.loglikelihood(dist, gooddsamples[:, i:i]), 1:numsamples) + llhoods = map(i -> Distributions.loglikelihood(dist, gooddsamples[:, i:i]), 1:numsamples) if numdirections > numgooddirections samples = gooddirections * gooddsamples else @@ -323,8 +314,8 @@ Reweigh samples using importance sampling -- returns a vector of log-likelihoods $(DocumentFunction.documentfunction(reweighsamples; argtext=Dict("madsdata"=>"MADS problem dictionary", - "predictions"=>"the model predictions for each of the samples", - "oldllhoods"=>"the log likelihoods of the parameters in the old distribution"))) + "predictions"=>"the model predictions for each of the samples", + "oldllhoods"=>"the log likelihoods of the parameters in the old distribution"))) Returns: @@ -338,7 +329,7 @@ function reweighsamples(madsdata::AbstractDict, predictions::AbstractArray, oldl j = 1 for okey in obskeys if haskey(madsdata["Observations"][okey], "weight") - newllhoods -= .5 * (weights[j] * (predictions[j, :] .- targets[j])) .^ 2 + newllhoods -= 0.5 * (weights[j] * (predictions[j, :] .- targets[j])) .^ 2 end j += 1 end @@ -350,24 +341,24 @@ Get important samples $(DocumentFunction.documentfunction(getimportantsamples; argtext=Dict("samples"=>"array of samples", - "llhoods"=>"vector of log-likelihoods"))) + "llhoods"=>"vector of log-likelihoods"))) Returns: - array of important samples """ function getimportantsamples(samples::AbstractArray, llhoods::AbstractVector) - sortedlhoods = sort(exp.(llhoods), rev=true) + sortedlhoods = sort(exp.(llhoods); rev=true) sortedprobs = sortedlhoods / sum(sortedlhoods) - cumprob = 0. + cumprob = 0.0 i = 1 - while cumprob < .95 + while cumprob < 0.95 cumprob += sortedprobs[i] i += 1 end thresholdllhood = log(sortedlhoods[i - 1]) imp_samples = Array{Float64}(undef, size(samples, 2), 0) - for i = eachindex(llhoods) + for i in eachindex(llhoods) if llhoods[i] > thresholdllhood imp_samples = hcat(imp_samples, vec(samples[i, :])) end @@ -380,7 +371,7 @@ Get weighted mean and variance samples $(DocumentFunction.documentfunction(weightedstats; argtext=Dict("samples"=>"array of samples", - "llhoods"=>"vector of log-likelihoods"))) + "llhoods"=>"vector of log-likelihoods"))) Returns: @@ -392,7 +383,7 @@ function weightedstats(samples::AbstractArray, llhoods::AbstractVector) return Statistics.mean(samples, wv, 1), Statistics.var(samples, wv, 1; corrected=false) end -function getparamrandom(madsdata::AbstractDict, numsamples::Integer=1, parameterkey::Union{Symbol,AbstractString}=""; init_dist::Bool=false) +function getparamrandom(madsdata::AbstractDict, numsamples::Integer=1, parameterkey::Union{Symbol, AbstractString}=""; init_dist::Bool=false) if parameterkey != "" return getparamrandom(madsdata, parameterkey; numsamples=numsamples, init_dist=init_dist) else @@ -409,7 +400,7 @@ function getparamrandom(madsdata::AbstractDict, numsamples::Integer=1, parameter return sample end end -function getparamrandom(madsdata::AbstractDict, parameterkey::Union{Symbol,AbstractString}; numsamples::Integer=1, paramdist::AbstractDict=Dict(), init_dist::Bool=false) +function getparamrandom(madsdata::AbstractDict, parameterkey::Union{Symbol, AbstractString}; numsamples::Integer=1, paramdist::AbstractDict=Dict(), init_dist::Bool=false) if haskey(madsdata, "Parameters") && haskey(madsdata["Parameters"], parameterkey) if length(paramdist) == 0 paramdist = getparamdistributions(madsdata; init_dist=init_dist) @@ -419,10 +410,10 @@ function getparamrandom(madsdata::AbstractDict, parameterkey::Union{Symbol,Abstr if typeof(dist) <: Distributions.Uniform a = log10(dist.a) b = log10(dist.b) - return 10. .^(a .+ (b .- a) .* Distributions.rand(Mads.rng, numsamples)) + return 10.0 .^ (a .+ (b .- a) .* Distributions.rand(Mads.rng, numsamples)) elseif typeof(dist) <: Distributions.Normal μ = log10(dist.μ) - return 10. .^(μ .+ dist.σ .* Distributions.randn(Mads.rng, numsamples)) + return 10.0 .^ (μ .+ dist.σ .* Distributions.randn(Mads.rng, numsamples)) end end return Distributions.rand(Mads.rng, paramdist[parameterkey], numsamples) @@ -435,11 +426,11 @@ Get independent sampling of model parameters defined in the MADS problem diction $(DocumentFunction.documentfunction(getparamrandom; argtext=Dict("madsdata"=>"MADS problem dictionary", - "parameterkey"=>"model parameter key", - "numsamples"=>"number of samples, [default=`1`]"), + "parameterkey"=>"model parameter key", + "numsamples"=>"number of samples, [default=`1`]"), keytext=Dict("init_dist"=>"if `true` use the distribution set for initialization in the MADS problem dictionary (defined using `init_dist` parameter field); if `false` (default) use the regular distribution set in the MADS problem dictionary (defined using `dist` parameter field)", - "numsamples"=>"number of samples", - "paramdist"=>"dictionary of parameter distributions"))) + "numsamples"=>"number of samples", + "paramdist"=>"dictionary of parameter distributions"))) Returns: @@ -452,12 +443,12 @@ Saltelli sensitivity analysis (brute force) $(DocumentFunction.documentfunction(saltellibrute; argtext=Dict("madsdata"=>"MADS problem dictionary"), keytext=Dict("N"=>"number of samples [default=`1000`]", - "seed"=>"random seed [default=`0`]", - "restartdir"=>"directory where files will be stored containing model results for fast simulation restarts"))) + "seed"=>"random seed [default=`0`]", + "restartdir"=>"directory where files will be stored containing model results for fast simulation restarts"))) """ -function saltellibrute(madsdata::AbstractDict; N::Integer=1000, seed::Integer=-1, rng::Union{Nothing,Random.AbstractRNG,DataType}=nothing, restartdir::AbstractString="") # TODO Saltelli (brute force) does not seem to work; not sure +function saltellibrute(madsdata::AbstractDict; N::Integer=1000, seed::Integer=-1, rng::Union{Nothing, Random.AbstractRNG, DataType}=nothing, restartdir::AbstractString="") # TODO Saltelli (brute force) does not seem to work; not sure Mads.setseed(seed; rng=rng) - numsamples = round(Int,sqrt(N)) + numsamples = round(Int, sqrt(N)) numoneparamsamples = numsamples nummanyparamsamples = numsamples # convert the distribution strings into actual distributions @@ -468,93 +459,93 @@ function saltellibrute(madsdata::AbstractDict; N::Integer=1000, seed::Integer=-1 results = Array{OrderedCollections.OrderedDict}(undef, numsamples) paramdict = Mads.getparamdict(madsdata) for i = 1:numsamples - for j = eachindex(paramkeys) + for j in eachindex(paramkeys) paramdict[paramkeys[j]] = Distributions.rand(Mads.rng, distributions[paramkeys[j]]) # TODO use parametersample end results[i] = f(paramdict) # this got to be slow to process end obskeys = getobskeys(madsdata) - sum = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - for i = eachindex(obskeys) - sum[obskeys[i]] = 0. + sum = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + for i in eachindex(obskeys) + sum[obskeys[i]] = 0.0 end for j = 1:numsamples - for i = eachindex(obskeys) + for i in eachindex(obskeys) sum[obskeys[i]] += results[j][obskeys[i]] end end - mean = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - for i = eachindex(obskeys) + mean = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + for i in eachindex(obskeys) mean[obskeys[i]] = sum[obskeys[i]] / numsamples end - for i = eachindex(paramkeys) - sum[paramkeys[i]] = 0. + for i in eachindex(paramkeys) + sum[paramkeys[i]] = 0.0 end for j = 1:numsamples - for i = eachindex(obskeys) - sum[obskeys[i]] += (results[j][obskeys[i]] - mean[obskeys[i]]) ^ 2 + for i in eachindex(obskeys) + sum[obskeys[i]] += (results[j][obskeys[i]] - mean[obskeys[i]])^2 end end - variance = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - for i = eachindex(obskeys) + variance = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + for i in eachindex(obskeys) variance[obskeys[i]] = sum[obskeys[i]] / (numsamples - 1) end madsinfo("Compute the main effect (first order) sensitivities (indices)") - mes = OrderedCollections.OrderedDict{String,OrderedCollections.OrderedDict}() - for k = eachindex(obskeys) - mes[obskeys[k]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() + mes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict}() + for k in eachindex(obskeys) + mes[obskeys[k]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() end - for i = eachindex(paramkeys) + for i in eachindex(paramkeys) madsinfo("Parameter : $(string(paramkeys[i]))") cond_means = Array{OrderedCollections.OrderedDict}(undef, numoneparamsamples) - @ProgressMeter.showprogress 1 "Computing ... " for j = 1:numoneparamsamples + ProgressMeter.@showprogress 1 "Computing ... " for j = 1:numoneparamsamples cond_means[j] = OrderedCollections.OrderedDict() - for k = eachindex(obskeys) - cond_means[j][obskeys[k]] = 0. + for k in eachindex(obskeys) + cond_means[j][obskeys[k]] = 0.0 end paramdict[paramkeys[i]] = Distributions.rand(Mads.rng, distributions[paramkeys[i]]) # TODO use parametersample for k = 1:nummanyparamsamples - for m = eachindex(paramkeys) + for m in eachindex(paramkeys) if m != i paramdict[paramkeys[m]] = Distributions.rand(Mads.rng, distributions[paramkeys[m]]) # TODO use parametersample end end results = f(paramdict) - for k = eachindex(obskeys) + for k in eachindex(obskeys) cond_means[j][obskeys[k]] += results[obskeys[k]] end end - for k = eachindex(obskeys) + for k in eachindex(obskeys) cond_means[j][obskeys[k]] /= nummanyparamsamples end end v = Array{Float64}(undef, numoneparamsamples) - for k = eachindex(obskeys) + for k in eachindex(obskeys) for j = 1:numoneparamsamples v[j] = cond_means[j][obskeys[k]] end - mes[obskeys[k]][paramkeys[i]] = Statistics.std(v) ^ 2 / variance[obskeys[k]] + mes[obskeys[k]][paramkeys[i]] = Statistics.std(v)^2 / variance[obskeys[k]] end end madsinfo("Compute the total effect sensitivities (indices)") # TODO we should use the same samples for total and main effect - tes = OrderedCollections.OrderedDict{String,OrderedCollections.OrderedDict}() - var = OrderedCollections.OrderedDict{String,OrderedCollections.OrderedDict}() - for k = eachindex(obskeys) - tes[obskeys[k]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - var[obskeys[k]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() + tes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict}() + var = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict}() + for k in eachindex(obskeys) + tes[obskeys[k]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + var[obskeys[k]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() end - for i = eachindex(paramkeys) + for i in eachindex(paramkeys) madsinfo("Parameter : $(string(paramkeys[i]))") cond_vars = Array{OrderedCollections.OrderedDict}(undef, nummanyparamsamples) cond_means = Array{OrderedCollections.OrderedDict}(undef, nummanyparamsamples) - @ProgressMeter.showprogress 1 "Computing ... " for j = 1:nummanyparamsamples - cond_vars[j] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - cond_means[j] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - for m = eachindex(obskeys) - cond_means[j][obskeys[m]] = 0. - cond_vars[j][obskeys[m]] = 0. + ProgressMeter.@showprogress 1 "Computing ... " for j = 1:nummanyparamsamples + cond_vars[j] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + cond_means[j] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + for m in eachindex(obskeys) + cond_means[j][obskeys[m]] = 0.0 + cond_vars[j][obskeys[m]] = 0.0 end - for m = eachindex(paramkeys) + for m in eachindex(paramkeys) if m != i paramdict[paramkeys[m]] = Distributions.rand(Mads.rng, distributions[paramkeys[m]]) # TODO use parametersample end @@ -563,24 +554,24 @@ function saltellibrute(madsdata::AbstractDict; N::Integer=1000, seed::Integer=-1 for k = 1:numoneparamsamples paramdict[paramkeys[i]] = Distributions.rand(Mads.rng, distributions[paramkeys[i]]) # TODO use parametersample results[k] = f(paramdict) - for m = eachindex(obskeys) + for m in eachindex(obskeys) cond_means[j][obskeys[m]] += results[k][obskeys[m]] end end - for m = eachindex(obskeys) + for m in eachindex(obskeys) cond_means[j][obskeys[m]] /= numoneparamsamples end for k = 1:numoneparamsamples - for m = eachindex(obskeys) - cond_vars[j][obskeys[m]] += (results[k][obskeys[m]] - cond_means[j][obskeys[m]]) ^ 2 + for m in eachindex(obskeys) + cond_vars[j][obskeys[m]] += (results[k][obskeys[m]] - cond_means[j][obskeys[m]])^2 end end - for m = eachindex(obskeys) + for m in eachindex(obskeys) cond_vars[j][obskeys[m]] /= numoneparamsamples - 1 end end - for j = eachindex(obskeys) - runningsum = 0. + for j in eachindex(obskeys) + runningsum = 0.0 for m = 1:nummanyparamsamples runningsum += cond_vars[m][obskeys[j]] end @@ -638,12 +629,12 @@ Saltelli sensitivity analysis $(DocumentFunction.documentfunction(saltelli; argtext=Dict("madsdata"=>"MADS problem dictionary"), keytext=Dict("N"=>"number of samples [default=`100`]", - "seed"=>"random seed [default=`0`]", - "restartdir"=>"directory where files will be stored containing model results for fast simulation restarts", - "parallel"=>"set to true if the model runs should be performed in parallel [default=`false`]", - "checkpointfrequency"=>"check point frequency [default=`N`]"))) + "seed"=>"random seed [default=`0`]", + "restartdir"=>"directory where files will be stored containing model results for fast simulation restarts", + "parallel"=>"set to true if the model runs should be performed in parallel [default=`false`]", + "checkpointfrequency"=>"check point frequency [default=`N`]"))) """ -function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng::Union{Nothing,Random.AbstractRNG,DataType}=nothing, restartdir::AbstractString="", parallel::Bool=false, checkpointfrequency::Integer=N, save::Bool=true, load::Bool=true) +function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng::Union{Nothing, Random.AbstractRNG, DataType}=nothing, restart::Bool=false, restartdir::AbstractString="", parallel::Bool=false, checkpointfrequency::Integer=N, save::Bool=true, load::Bool=true) if load rootname = Mads.getmadsrootname(madsdata) filename = "$(rootname)-saltelli-$(N).jld2" @@ -655,13 +646,13 @@ function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng: end end Mads.setseed(seed; rng=rng) - madsoutput("Number of samples: $N\n"); + madsoutput("Number of samples: $N\n") paramallkeys = Mads.getparamkeys(madsdata) - paramalldict = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramallkeys, Mads.getparamsinit(madsdata))) + paramalldict = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramallkeys, Mads.getparamsinit(madsdata))) paramoptkeys = Mads.getoptparamkeys(madsdata) nP = length(paramoptkeys) - madsoutput("Number of model paramters to be analyzed: $(nP) \n"); - madsoutput("Number of model evaluations to be perforemed: $(N * 2 + N * nP) \n"); + madsoutput("Number of model paramters to be analyzed: $(nP) \n") + madsoutput("Number of model evaluations to be perforemed: $(N * 2 + N * nP) \n") obskeys = Mads.getobskeys(madsdata) nO = length(obskeys) distributions = Mads.getparamdistributions(madsdata) @@ -669,13 +660,13 @@ function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng: A = Array{Float64}(undef, N, 0) B = Array{Float64}(undef, N, 0) C = Array{Float64}(undef, N, nP) - variance = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}}() # variance - mes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}}() # main effect (first order) sensitivities - tes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}}() # total effect sensitivities + variance = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}}() # variance + mes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}}() # main effect (first order) sensitivities + tes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}}()# total effect sensitivities for i = 1:nO - variance[obskeys[i]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - mes[obskeys[i]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - tes[obskeys[i]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() + variance[obskeys[i]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + mes[obskeys[i]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + tes[obskeys[i]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() end for key in paramoptkeys delete!(paramalldict, key) @@ -686,68 +677,67 @@ function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng: A = [A s1] B = [B s2] end - madsoutput( "Computing model outputs to calculate total output mean and variance ... Sample A ...\n" ); + madsoutput("Computing model outputs to calculate total output mean and variance ... Sample A ...\n") function farray(Ai) - feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramoptkeys, Ai)))) + feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramoptkeys, Ai)))) result = Array{Float64}(undef, length(obskeys)) - for i = eachindex(obskeys) + for i in eachindex(obskeys) result[i] = feval[obskeys[i]] end return result end yA = Array{Float64}(undef, N, length(obskeys)) - if restartdir == "" + if restart && restartdir == "" restartdir = getrestartdir(madsdata) end - flagrestart = restartdir != "" if parallel Avecs = Array{Vector{Float64}}(undef, size(A, 1)) for i = 1:N Avecs[i] = vec(A[i, :]) end - if flagrestart + if restart pmapresult = RobustPmap.crpmap(farray, checkpointfrequency, joinpath(restartdir, "yA"), Avecs; t=Vector{Float64}) else pmapresult = RobustPmap.rpmap(farray, Avecs; t=Vector{Float64}) end for i = 1:N - for j = eachindex(obskeys) + for j in eachindex(obskeys) yA[i, j] = pmapresult[i][j] end end else if !loadsaltellirestart!(yA, "yA", restartdir) - @ProgressMeter.showprogress 1 "Executing Saltelli Sensitivity Analysis ... Sample A ..." for i = 1:N - feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramoptkeys, A[i, :])))) - for j = eachindex(obskeys) + ProgressMeter.@showprogress 1 "Executing Saltelli Sensitivity Analysis ... Sample A ..." for i = 1:N + feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramoptkeys, A[i, :])))) + for j in eachindex(obskeys) yA[i, j] = feval[obskeys[j]] end end savesaltellirestart(yA, "yA", restartdir) end end - madsoutput( "Computing model outputs to calculate total output mean and variance ... Sample B ...\n" ); + madsoutput("Computing model outputs to calculate total output mean and variance ... Sample B ...\n") yB = Array{Float64}(undef, N, length(obskeys)) if parallel Bvecs = Array{Vector{Float64}}(undef, size(B, 1)) for i = 1:N Bvecs[i] = vec(B[i, :]) end - if flagrestart + if restart pmapresult = RobustPmap.crpmap(farray, checkpointfrequency, joinpath(restartdir, "yB"), Bvecs; t=Vector{Float64}) else pmapresult = RobustPmap.rpmap(farray, Bvecs; t=Vector{Float64}) end for i = 1:N - for j = eachindex(obskeys) + for j in eachindex(obskeys) yB[i, j] = pmapresult[i][j] end end else if !loadsaltellirestart!(yB, "yB", restartdir) - @ProgressMeter.showprogress 1 "Executing Saltelli Sensitivity Analysis ... " for i = 1:N - feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramoptkeys, B[i, :])))) - for j = eachindex(obskeys) + ProgressMeter.@showprogress 1 "Executing Saltelli Sensitivity Analysis ... " for i = 1:N + feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramoptkeys, B[i, :])))) + for j in eachindex(obskeys) yB[i, j] = feval[obskeys[j]] end end @@ -764,28 +754,28 @@ function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng: end end end - madsoutput( "Computing model outputs to calculate total output mean and variance ... Sample C ... Parameter $(string(paramoptkeys[i]))\n" ); + madsoutput("Computing model outputs to calculate total output mean and variance ... Sample C ... Parameter $(string(paramoptkeys[i]))\n") yC = Array{Float64}(undef, N, length(obskeys)) if parallel Cvecs = Array{Vector{Float64}}(undef, size(C, 1)) for j = 1:N Cvecs[j] = vec(C[j, :]) end - if flagrestart + if restart pmapresult = RobustPmap.crpmap(farray, checkpointfrequency, joinpath(restartdir, "yC$i"), Cvecs; t=Vector{Float64}) else pmapresult = RobustPmap.rpmap(farray, Cvecs; t=Vector{Float64}) end for j = 1:N - for k = eachindex(obskeys) + for k in eachindex(obskeys) yC[j, k] = pmapresult[j][k] end end else if !loadsaltellirestart!(yC, "yC$(i)", restartdir) - @ProgressMeter.showprogress 1 "Executing Saltelli Sensitivity Analysis ... " for j = 1:N - feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramoptkeys, C[j, :])))) - for k = eachindex(obskeys) + ProgressMeter.@showprogress 1 "Executing Saltelli Sensitivity Analysis ... " for j = 1:N + feval = f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramoptkeys, C[j, :])))) + for k in eachindex(obskeys) yC[j, k] = feval[obskeys[k]] end end @@ -794,11 +784,11 @@ function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng: end maxnnans = 0 for j = 1:nO - yAnonan = isnan.(yA[:,j]) - yBnonan = isnan.(yB[:,j]) - yCnonan = isnan.(yC[:,j]) - nonan = ( yAnonan .+ yBnonan .+ yCnonan ) .== 0 - yT = vcat( yA[nonan,j], yB[nonan,j] ) # this should not include C + yAnonan = isnan.(yA[:, j]) + yBnonan = isnan.(yB[:, j]) + yCnonan = isnan.(yC[:, j]) + nonan = (yAnonan .+ yBnonan .+ yCnonan) .== 0 + yT = vcat(yA[nonan, j], yB[nonan, j]) # this should not include C nanindices = findall(map(~, nonan)) # println("$nanindices") nnans = length(nanindices) @@ -815,24 +805,24 @@ function saltelli(madsdata::AbstractDict; N::Integer=100, seed::Integer=-1, rng: # varA = Statistics.var( yA[nonan,j] ) # this is faster # varB = abs( ( LinearAlgebra.dot( yB[nonan,j], yB[nonan,j] ) - f0B^2 * nnonnans ) / ( nnonnans - 1 ) ) # varB = Statistics.var( yB[nonan,j] ) # this is faster - varC = Statistics.var(yC[nonan,j]) + varC = Statistics.var(yC[nonan, j]) # varP = abs( ( LinearAlgebra.dot( yB[nonan, j], yC[nonan, j] ) / nnonnans - f0B * f0C ) ) # Orignial # varP2 = abs( ( LinearAlgebra.dot( yB[nonan, j], yC[nonan, j] ) - f0B * f0C * nnonnans ) / ( nnonnans - 1 ) ) # Imporved - varP3 = abs( Statistics.mean( yB[nonan,j] .* ( yC[nonan, j] - yA[nonan,j] ) ) ) # Recommended + varP3 = abs(Statistics.mean(yB[nonan, j] .* (yC[nonan, j] - yA[nonan, j]))) # Recommended # varP4 = Statistics.mean( ( yB[nonan,j] - yC[nonan, j] ).^2 ) / 2 # Mads.c; very different from all the other estimates # println("varP $varP varP2 $varP2 varP3 $varP3 varP4 $varP4") # varPnot = abs( ( LinearAlgebra.dot( yA[nonan, j], yC[nonan, j] ) / nnonnans - f0A * f0C ) ) # Orignial # varPnot2 = abs( ( LinearAlgebra.dot( yA[nonan, j], yC[nonan, j] ) - f0A * f0C * nnonnans ) / ( nnonnans - 1 ) ) # Imporved # varPnot3 = Statistics.mean( ( yA[nonan,j] - yC[nonan, j] ).^2 ) / 2 # Recommended; also used in Mads.c - expPnot = Statistics.mean( ( yA[nonan,j] - yC[nonan, j] ).^2 ) / 2 + expPnot = Statistics.mean((yA[nonan, j] - yC[nonan, j]) .^ 2) / 2 # println("varPnot $varPnot varPnot2 $varPnot2 varPnot3 $varPnot3") variance[obskeys[j]][paramoptkeys[i]] = varC -# if varA < eps(Float64) && varP < eps(Float64) -# tes[obskeys[j]][paramoptkeys[i]] = mes[obskeys[j]][paramoptkeys[i]] = NaN -# else -# mes[obskeys[j]][paramoptkeys[i]] = min( 1, max( 0, varP / varA ) ) # varT or varA? i think it should be varA -# tes[obskeys[j]][paramoptkeys[i]] = min( 1, max( 0, 1 - varPnot / varB) ) # varT or varA; i think it should be varA; i do not think should be varB? -# end + # if varA < eps(Float64) && varP < eps(Float64) + # tes[obskeys[j]][paramoptkeys[i]] = mes[obskeys[j]][paramoptkeys[i]] = NaN + # else + # mes[obskeys[j]][paramoptkeys[i]] = min( 1, max( 0, varP / varA ) ) # varT or varA? i think it should be varA + # tes[obskeys[j]][paramoptkeys[i]] = min( 1, max( 0, 1 - varPnot / varB) ) # varT or varA; i think it should be varA; i do not think should be varB? + # end # mes[obskeys[j]][paramoptkeys[i]] = varP / varT # tes[obskeys[j]][paramoptkeys[i]] = 1 - varPnot / varT # varianceA[obskeys[j]][paramoptkeys[i]] = varT @@ -867,7 +857,7 @@ Compute sensitivities for each model parameter; averaging the sensitivity indice $(DocumentFunction.documentfunction(computeparametersensitities; argtext=Dict("madsdata"=>"MADS problem dictionary", - "saresults"=>"dictionary with sensitivity analysis results"))) + "saresults"=>"dictionary with sensitivity analysis results"))) """ function computeparametersensitities(madsdata::AbstractDict, saresults::AbstractDict) paramkeys = getoptparamkeys(madsdata) @@ -875,12 +865,12 @@ function computeparametersensitities(madsdata::AbstractDict, saresults::Abstract mes = saresults["mes"] tes = saresults["tes"] var = saresults["var"] - pvar = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() # parameter variance - pmes = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() # parameter main effect (first order) sensitivities - ptes = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() # parameter total effect sensitivities - for i = eachindex(paramkeys) + pvar = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() # parameter variance + pmes = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() # parameter main effect (first order) sensitivities + ptes = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() # parameter total effect sensitivities + for i in eachindex(paramkeys) pv = pm = pt = 0 - for j = eachindex(obskeys) + for j in eachindex(obskeys) m = isnothing(saresults["mes"][obskeys[j]][paramkeys[i]]) ? 0 : saresults["mes"][obskeys[j]][paramkeys[i]] t = isnothing(saresults["tes"][obskeys[j]][paramkeys[i]]) ? 0 : saresults["tes"][obskeys[j]][paramkeys[i]] v = isnothing(saresults["var"][obskeys[j]][paramkeys[i]]) ? 0 : saresults["var"][obskeys[j]][paramkeys[i]] @@ -898,19 +888,19 @@ end # Parallelization of Saltelli functions saltelli_functions = ["saltelli", "saltellibrute"] global index = 0 -for mi = eachindex(saltelli_functions) +for mi in eachindex(saltelli_functions) global index = mi q = quote """ Parallel version of $(saltelli_functions[index]) """ - function $(Symbol(string(saltelli_functions[index], "parallel")))(madsdata::AbstractDict, numsaltellis::Integer; N::Integer=100, seed::Integer=-1, rng::Union{Nothing,Random.AbstractRNG,DataType}=nothing, restartdir::AbstractString="") + function $(Symbol(string(saltelli_functions[index], "parallel")))(madsdata::AbstractDict, numsaltellis::Integer; N::Integer=100, seed::Integer=-1, rng::Union{Nothing, Random.AbstractRNG, DataType}=nothing, restartdir::AbstractString="") Mads.setseed(seed; rng=rng) if numsaltellis < 1 madserror("Number of parallel sensitivity runs must be > 0 ($numsaltellis < 1)") return end - results = RobustPmap.rpmap(i->$(Symbol(saltelli_functions[index]))(madsdata; N=N, seed=seed+i, restartdir=restartdir), 1:numsaltellis) + results = RobustPmap.rpmap(i -> $(Symbol(saltelli_functions[index]))(madsdata; N=N, seed=seed + i, restartdir=restartdir), 1:numsaltellis) mesall = results[1]["mes"] tesall = results[1]["tes"] varall = results[1]["var"] @@ -935,7 +925,7 @@ for mi = eachindex(saltelli_functions) varall[obskey][paramkey] /= numsaltellis end end - Dict("mes" => mesall, "tes" => tesall, "var" => varall, "samplesize" => N * numsaltellis, "seed" => seed, "method" => $(saltelli_functions[index])*"_parallel") + Dict("mes" => mesall, "tes" => tesall, "var" => varall, "samplesize" => N * numsaltellis, "seed" => seed, "method" => $(saltelli_functions[index]) * "_parallel") end # end function end # end quote Core.eval(Mads, q) @@ -946,7 +936,7 @@ Print sensitivity analysis results $(DocumentFunction.documentfunction(printSAresults; argtext=Dict("madsdata"=>"MADS problem dictionary", - "results"=>"dictionary with sensitivity analysis results"))) + "results"=>"dictionary with sensitivity analysis results"))) """ function printSAresults(madsdata::AbstractDict, results::AbstractDict) mes = results["mes"] @@ -1027,7 +1017,7 @@ Print sensitivity analysis results (method 2) $(DocumentFunction.documentfunction(printSAresults2; argtext=Dict("madsdata"=>"MADS problem dictionary", - "results"=>"dictionary with sensitivity analysis results"))) + "results"=>"dictionary with sensitivity analysis results"))) """ function printSAresults2(madsdata::AbstractDict, results::AbstractDict) mes = results["mes"] @@ -1076,7 +1066,7 @@ function void2nan!(dict::AbstractDict) # TODO generalize using while loop and re dict[i][j] = NaN end if typeof(dict[i][j]) <: AbstractDict - for k = keys(dict[i][j]) + for k in keys(dict[i][j]) if isnothing(dict[i][j][k]) dict[i][j][k] = NaN end @@ -1094,7 +1084,7 @@ $(DocumentFunction.documentfunction(deleteNaN!; argtext=Dict("df"=>"dataframe"))) """ function deleteNaN!(df::DataFrames.DataFrame) - for i in 1:size(df, 2) + for i = 1:size(df, 2) if typeof(df[!, i][1]) <: Number delete!(df, findall(isnan.(df[!, i][:]))) if size(df, 1) == 0 @@ -1112,9 +1102,9 @@ argtext=Dict("df"=>"dataframe"))) """ function maxtofloatmax!(df::DataFrames.DataFrame) limit = floatmax(Float32) - for i in 1:size(df, 2) + for i = 1:size(df, 2) if typeof(df[!, i][1]) <: Number - for j = eachindex(df[!, i]) + for j in eachindex(df[!, i]) if df[!, i][j] > limit df[!, i][j] = limit end @@ -1129,14 +1119,14 @@ Sensitivity analysis using Saltelli's extended Fourier Amplitude Sensitivity Tes $(DocumentFunction.documentfunction(efast; argtext=Dict("md"=>"MADS problem dictionary"), keytext=Dict("N"=>"number of samples [default=`100`]", - "M"=>"maximum number of harmonics [default=`6`]", - "gamma"=>"multiplication factor (Saltelli 1999 recommends gamma = 2 or 4) [default=`4`]", - "seed"=>"random seed [default=`0`]", - "checkpointfrequency"=>"check point frequency [default=`N`]", - "restartdir"=>"directory where files will be stored containing model results for the efast simulation restarts [default=`\"efastcheckpoints\"`]", - "restart"=>"save restart information [default=`false`]"))) + "M"=>"maximum number of harmonics [default=`6`]", + "gamma"=>"multiplication factor (Saltelli 1999 recommends gamma = 2 or 4) [default=`4`]", + "seed"=>"random seed [default=`0`]", + "checkpointfrequency"=>"check point frequency [default=`N`]", + "restartdir"=>"directory where files will be stored containing model results for the efast simulation restarts [default=`\"efastcheckpoints\"`]", + "restart"=>"save restart information [default=`false`]"))) """ -function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, seed::Integer=-1, checkpointfrequency::Integer=N, save::Bool=true, load::Bool=false, execute::Bool=true, parallel::Bool=false, robustpmap::Bool=true, restartdir::AbstractString="efastcheckpoints", restart::Bool=false, rng::Union{Nothing,Random.AbstractRNG,DataType}=nothing) +function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, seed::Integer=-1, checkpointfrequency::Integer=N, save::Bool=true, load::Bool=false, execute::Bool=true, parallel::Bool=false, robustpmap::Bool=true, restartdir::AbstractString="efastcheckpoints", restart::Bool=false, rng::Union{Nothing, Random.AbstractRNG, DataType}=nothing) issvr = false # a: Sensitivity of each Sobol parameter (low: very sensitive, high; not sensitive) # A and B: Real & Imaginary components of Fourier coefficients, respectively. Used to calculate sensitivty. @@ -1196,17 +1186,17 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, if Wi <= nprime - 1 # CASE 1: Very small Wcmax (W_comp is all ones) W_comp = ones(1, nprime - 1) elseif Wcmax < nprime - 1 # CASE 2: Wcmax < nprime - 1 - step = 1 - loops = ceil((nprime - 1) / Wcmax) #loops rounded up + step = 1 + loops = ceil((nprime - 1) / Wcmax) #loops rounded up # W_comp has a step size of 1, might need to repeat W_comp frequencies to avoid going over Wcmax W_comp = [] for i = 1:loops W_comp = [W_comp; collect(1:step:Wcmax)] end W_comp = W_comp[1:(nprime - 1)] # Reducing W_comp to a vector of size nprime - elseif Wcmax >= nprime-1 # CASE 3: wcmax >= nprime -1 Most typical case - step = round(Wcmax / (nprime - 1)) - W_comp = 1 : step : step * (nprime - 1) + elseif Wcmax >= nprime - 1 # CASE 3: wcmax >= nprime -1 Most typical case + step = round(Wcmax / (nprime - 1)) + W_comp = 1:step:(step * (nprime - 1)) end return W_comp, Wcmax end @@ -1219,7 +1209,7 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, Wi = (Ns_total / Nr - 1) / (gamma * M) # Based on Nyquist Freq # Based on (Saltelli 1999), Wi/Nr should be between 16-64 # ceil(Wi) == floor(Wi) checks if Wi is an integer frequency - if 16 <= Wi/Nr && Wi/Nr <= 64 && ceil(Wi - eps(Float32)) == floor(Wi + eps(Float32)) + if 16 <= Wi / Nr && Wi / Nr <= 64 && ceil(Wi - eps(Float32)) == floor(Wi + eps(Float32)) Wi = Int(Wi) Ns = Int(Ns_total / Nr) if iseven(Ns) @@ -1235,18 +1225,18 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, Ns0 = Ns_total # Freezing original Ns value given for Nr_ = 1:100 global Nr = Nr_ - for Ns_total_ = Ns0 + 1:1:Ns0 + 5000 + for Ns_total_ = (Ns0 + 1):1:(Ns0 + 5000) Ns_total = Ns_total_ - Wi = (Ns_total / Nr - 1) / ( gamma * M) - if 16 <= Wi/Nr && Wi/Nr <= 64 && ceil(Wi - eps(Float32)) == floor(Wi + eps(Float32)) + Wi = (Ns_total / Nr - 1) / (gamma * M) + if 16 <= Wi / Nr && Wi / Nr <= 64 && ceil(Wi - eps(Float32)) == floor(Wi + eps(Float32)) Wi = round(Int, Wi) Ns = round(Int, Ns_total / Nr) if iseven(Ns) Ns += 1 Ns_total = Ns * Nr end - madsoutput("Ns_total has been adjusted (upwards) to obtain optimal Nr/Wi pairing!\n", 2); - madsoutput("Ns_total = $(Ns_total) ... Nr = $Nr ... Wi = $Wi ... Ns = $Ns\n", 2); + madsoutput("Ns_total has been adjusted (upwards) to obtain optimal Nr/Wi pairing!\n", 2) + madsoutput("Ns_total = $(Ns_total) ... Nr = $Nr ... Wi = $Wi ... Ns = $Ns\n", 2) return Nr, Wi, Ns, Ns_total end end @@ -1258,14 +1248,14 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, function eFAST_distributeX(X, nprime, InputData) # Attributing data matrix to vectors # dist provides all necessary information on distribution (type, min, max, mean, std) - (name, dist) = (InputData[:,1], InputData[:,2]) + (name, dist) = (InputData[:, 1], InputData[:, 2]) for k = 1:nprime # If the parameter is one we are analyzing then we will assign numbers according to its probability dist # Otherwise, we will simply set it at a constant (i.e. its initial value) # This returns true if the parameter k is a distribution (i.e. it IS a parameter we are interested in) - if typeof(InputData[k,2]) <: Distributions.Distribution + if typeof(InputData[k, 2]) <: Distributions.Distribution # dist contains all data about distribution so this will apply any necessary distributions to X - X[:,k] = Statistics.quantile.(dist[k], X[:,k]) + X[:, k] = Statistics.quantile.(dist[k], X[:, k]) else madscritical("eFAST error in assigning input data!") end # End if @@ -1277,29 +1267,29 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, # 0 -> We are removing the phase shift FOR SVR phase = 1 ## Redistributing constCell - (ismads, P, nprime, ny, Nr, Ns, M, Wi, W_comp,S_vec, InputData, paramalldict, paramkeys, issvr, directOutput, f, seed) = constCell + (ismads, P, nprime, ny, Nr, Ns, M, Wi, W_comp, S_vec, InputData, paramalldict, paramkeys, issvr, directOutput, f, seed) = constCell # If we want to use a seed for our random phis # +kL because we want to have the same string of seeds for any initial seed - Mads.setseed(seed+kL; rng=rng) + Mads.setseed(seed + kL; rng=rng) # Determining which parameter we are on - k = Int(ceil(kL/Nr)) + k = Int(ceil(kL / Nr)) # Initializing - W_vec = zeros(1,nprime) # W_vec (Frequencies) - phi_mat = zeros(nprime,Ns) # Phi matrix (phase shift corresponding to each resample) + W_vec = zeros(1, nprime) # W_vec (Frequencies) + phi_mat = zeros(nprime, Ns) # Phi matrix (phase shift corresponding to each resample) ## Creating W_vec (kth element is Wi) W_vec[k] = Wi ## Edge cases # As long as nprime!=1 our W_vec will have complementary frequencies - if nprime !=1 + if nprime != 1 if k != 1 - W_vec[1:(k-1)] = W_comp[1:(k-1)] + W_vec[1:(k - 1)] = W_comp[1:(k - 1)] end if k != nprime - W_vec[(k+1):nprime] = W_comp[k:(nprime-1)] + W_vec[(k + 1):nprime] = W_comp[k:(nprime - 1)] end end @@ -1307,14 +1297,14 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, # Random Phase Shift phi = rand(Mads.rng, 1, nprime) * 2 * pi for j = 1:Ns - phi_mat[:,j] = phi' + phi_mat[:, j] = phi' end ## Preallocate/Initialize - A = 0 - B = 0 # Fourier coefficients - Wi = maximumnan(W_vec) # Maximum frequency (i.e. the frequency for our parameter of interest) - Wcmax = maximumnan(W_comp) # Maximum frequency in complementary set + A = 0 + B = 0 # Fourier coefficients + Wi = maximumnan(W_vec)# Maximum frequency (i.e. the frequency for our parameter of interest) + Wcmax = maximumnan(W_comp)# Maximum frequency in complementary set # Adding on the random phase shift alpha = W_vec' .* S_vec' .+ phi_mat # W*S + phi @@ -1322,7 +1312,7 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, if phase == 0 alpha = W_vec' .* S_vec' end - X = .5 .+ asin.(sin.(alpha'))/pi # Transformation function Saltelli suggests + X = 0.5 .+ asin.(sin.(alpha')) / pi # Transformation function Saltelli suggests # In this function we assign probability distributions to parameters we are analyzing # and set parameters that we aren't analyzing to constants. @@ -1359,29 +1349,29 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, end else =# - # If # of processors is > Nr*nprime+(Nr+1) compute model output in parallel - if robustpmap - if restart - madsinfo("RobustPmap of forward runs with restart for parameter $(string(paramkeys[k])) ...") - m = RobustPmap.crpmap(i->collect(values(f(merge(paramalldict, OrderedCollections.OrderedDict{Union{Symbol,String},Float64}(zip(paramkeys, X[i, :])))))), checkpointfrequency, joinpath(restartdir, "efast_$(kL)_$k"), 1:size(X, 1)) + # If # of processors is > Nr*nprime+(Nr+1) compute model output in parallel + if robustpmap + if restart + madsinfo("RobustPmap of forward runs with restart for parameter $(string(paramkeys[k])) ...") + m = RobustPmap.crpmap(i -> collect(values(f(merge(paramalldict, OrderedCollections.OrderedDict{Union{Symbol, String}, Float64}(zip(paramkeys, X[i, :])))))), checkpointfrequency, joinpath(restartdir, "efast_$(kL)_$k"), 1:size(X, 1)) - else - madsinfo("RobustPmap of forward runs without restart for parameter $(string(paramkeys[k])) ...") - m = RobustPmap.rpmap(i->collect(values(f(merge(paramalldict, OrderedCollections.OrderedDict{Union{Symbol,String},Float64}(zip(paramkeys, X[i, :])))))), 1:size(X, 1)) - end - Y = permutedims(hcat(m...)) - elseif parallel && Distributed.nprocs() > 1 - rv1 = collect(values(f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramkeys, X[1, :])))))) - psa = collect(X) # collect to avoid issues if paramarray is a SharedArray - r = SharedArrays.SharedArray{Float64}(length(rv1), size(X, 1)) - r[:, 1] = rv1 - @Distributed.everywhere md = $md - @sync @Distributed.distributed for i = 2:size(X, 1) - func_forward = Mads.makemadscommandfunction(md) # this is needed to avoid issues with the closure - r[:, i] = collect(values(func_forward(merge(paramalldict, OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramkeys, X[i, :])))))) - end - Y = permutedims(collect(r)) + else + madsinfo("RobustPmap of forward runs without restart for parameter $(string(paramkeys[k])) ...") + m = RobustPmap.rpmap(i -> collect(values(f(merge(paramalldict, OrderedCollections.OrderedDict{Union{Symbol, String}, Float64}(zip(paramkeys, X[i, :])))))), 1:size(X, 1)) + end + Y = permutedims(hcat(m...)) + elseif parallel && Distributed.nprocs() > 1 + rv1 = collect(values(f(merge(paramalldict, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramkeys, X[1, :])))))) + psa = collect(X) # collect to avoid issues if paramarray is a SharedArray + r = SharedArrays.SharedArray{Float64}(length(rv1), size(X, 1)) + r[:, 1] = rv1 + Distributed.@everywhere md = $md + @sync Distributed.@distributed for i = 2:size(X, 1) + func_forward = Mads.makemadscommandfunction(md) # this is needed to avoid issues with the closure + r[:, i] = collect(values(func_forward(merge(paramalldict, OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramkeys, X[i, :])))))) end + Y = permutedims(collect(r)) + end #end #End if (processors) ## CALCULATING MODEL OUTPUT (Standalone) @@ -1400,14 +1390,14 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, ## Calculating Fourier coefficients associated with MAIN INDICES # p corresponds to the harmonics of Wi for p = 1:M - A = LinearAlgebra.dot(Y[:], cos.(Wi*p*S_vec)) - B = LinearAlgebra.dot(Y[:], sin.(Wi*p*S_vec)) + A = LinearAlgebra.dot(Y[:], cos.(Wi * p * S_vec)) + B = LinearAlgebra.dot(Y[:], sin.(Wi * p * S_vec)) AVi += A^2 + B^2 end # 1/Ns taken out of both A and B for optimization! AVi = AVi / Ns^2 ## Calculating Fourier coefficients associated with COMPLEMENTARY FREQUENCIES - for j = 1:Wcmax * M + for j = 1:(Wcmax * M) A = LinearAlgebra.dot(Y[:], cos.(j * S_vec)) B = LinearAlgebra.dot(Y[:], sin.(j * S_vec)) AVci = AVci + A^2 + B^2 @@ -1420,32 +1410,32 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, elseif ny > 1 ## If the analyzed system is dynamic, we must add an extra dimension to calculate sensitivity indices for each point # These will be the sums of variances over all resamplings (Nr loops) - AV = zeros(ny,1) # Initializing Variances to 0 - AVi = zeros(ny,1) - AVci = zeros(ny,1) + AV = zeros(ny, 1) # Initializing Variances to 0 + AVi = zeros(ny, 1) + AVci = zeros(ny, 1) ## Calculating Si and Sti (main and total sensitivity indices) # Looping over each point in time - @ProgressMeter.showprogress 1 "Calculating Fourier coefficients for observations ... " for i = 1:ny + ProgressMeter.@showprogress 1 "Calculating Fourier coefficients for observations ... " for i = 1:ny # Subtract the average value from Y - Y[:,i] = permutedims((Y[:,i] .- Statistics.mean(Y[:,i]))) + Y[:, i] = permutedims((Y[:, i] .- Statistics.mean(Y[:, i]))) ## Calculating Fourier coefficients associated with MAIN INDICES # p corresponds to the harmonics of Wi for p = 1:M - A = LinearAlgebra.dot(Y[:,i], cos.(Wi * p * S_vec)) - B = LinearAlgebra.dot(Y[:,i], sin.(Wi * p * S_vec)) - AVi[i] = AVi[i] + A^2 + B^2 + A = LinearAlgebra.dot(Y[:, i], cos.(Wi * p * S_vec)) + B = LinearAlgebra.dot(Y[:, i], sin.(Wi * p * S_vec)) + AVi[i] = AVi[i] + A^2 + B^2 end # 1/Ns taken out of both A and B for optimization! AVi[i] = AVi[i] / Ns^2 ## Calculating Fourier coefficients associated with COMPLEMENTARY FREQUENCIES - for j = 1:Wcmax * M - A = LinearAlgebra.dot(Y[:,i], cos.(j * S_vec)) - B = LinearAlgebra.dot(Y[:,i], sin.(j * S_vec)) + for j = 1:(Wcmax * M) + A = LinearAlgebra.dot(Y[:, i], cos.(j * S_vec)) + B = LinearAlgebra.dot(Y[:, i], sin.(j * S_vec)) AVci[i] = AVci[i] + A^2 + B^2 end AVci[i] = AVci[i] / Ns^2 ## Total Variance By definition of variance: V(Y) = (Y - mean(Y))^2 - AV[i] = LinearAlgebra.dot(Y[:,i], Y[:,i]) / Ns + AV[i] = LinearAlgebra.dot(Y[:, i], Y[:, i]) / Ns end #END for i = 1:ny # Storing results in matrix format resultvec = hcat(AV, AVi, AVci) @@ -1464,9 +1454,9 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, # Are we reading from a .mads file or are we running this as a standalone (input: .csv, output: .exe)? # 1 for MADS, 0 for standalone. Basically determines IO of the code. - ismads = 1 + ismads = 1 # 1 if we are reading model output directly (e.g. from .csv), 0 if we are using some sort of script to calculate model output - directOutput = 0 + directOutput = 0 # 1 if we are using svr model function (svrobj) to calculate Y #issvr = 1 #defined in function # Plot results as .svg file @@ -1490,13 +1480,13 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, P = Distributed.nworkers() madsoutput("Number of processors is $P\n") - paramallkeys = getparamkeys(md) + paramallkeys = getparamkeys(md) # Values of this dictionary are the intial values - paramalldict = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}(zip(paramallkeys, map(key->md["Parameters"][key]["init"], paramallkeys))) + paramalldict = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}(zip(paramallkeys, map(key -> md["Parameters"][key]["init"], paramallkeys))) # Only the parameters we wish to analyze - paramkeys = getoptparamkeys(md) + paramkeys = getoptparamkeys(md) # All the observation sites and time points we will analyze them at - obskeys = getobskeys(md) + obskeys = getobskeys(md) # Get distributions for the parameters we will be performing SA on distributions = getparamdistributions(md) @@ -1507,17 +1497,17 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, InputData = Array{Any}(undef, length(paramkeys), 2) ### InputData will hold PROBABILITY DISTRIBUTIONS for the parameters we are analyzing (Other parameters stored in paramalldict) - for i = eachindex(paramkeys) - InputData[i,1] = paramkeys[i] - InputData[i,2] = distributions[paramkeys[i]] + for i in eachindex(paramkeys) + InputData[i, 1] = paramkeys[i] + InputData[i, 2] = distributions[paramkeys[i]] end # Total number of parameters - n = length(paramallkeys) + n = length(paramallkeys) # Number of parameters we are analyzing nprime = length(paramkeys) # ny > 1 means the system is dynamic (model output is a vector) - ny = length(obskeys) + ny = length(obskeys) # This is here to delete parameters of interest from paramalldict # The parameters of interest will be calculated by eFAST_distributeX @@ -1608,14 +1598,14 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, (W_comp, Wcmax) = eFAST_getCompFreq(Wi, nprime, M) # New domain [-pi pi] spaced by Ns points - S_vec = range(-pi, stop=pi, length=Ns) + S_vec = range(-pi; stop=pi, length=Ns) ## Preallocation - resultmat = zeros(nprime,3,Nr) # Matrix holding all results (decomposed variance) - Var = zeros(ny,nprime) # Output variance - Si = zeros(ny,nprime) # Main sensitivity indices - Sti = zeros(ny,nprime) # Total sensitivity indices - W_vec = zeros(1,nprime) # W_vec (Frequencies) + resultmat = zeros(nprime, 3, Nr) # Matrix holding all results (decomposed variance) + Var = zeros(ny, nprime) # Output variance + Si = zeros(ny, nprime) # Main sensitivity indices + Sti = zeros(ny, nprime) # Total sensitivity indices + W_vec = zeros(1, nprime) # W_vec (Frequencies) ########## DIFFERENT CASES DEPENDING ON # OF PROCESSORS #if P <= nprime*Nr + 1 @@ -1624,10 +1614,10 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, #if P > nprime*Nr + 1 # Distributed.nworkers() is quite high, we choose to parallelize over n, Nr, AND also model output - if P>1 - madsinfo("Parallelizing of resampling & parameters"); + if P > 1 + madsinfo("Parallelizing of resampling & parameters") else - madsinfo("No Parallelization!"); + madsinfo("No Parallelization!") end ## Storing constants inside of a cell @@ -1638,7 +1628,7 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, function sendto(p; args...) for i in p for (nm, val) in args - @Distributed.spawnat(i, Core.eval(Main, Expr(:(=), nm, val))) + Distributed.@spawnat(i, Core.eval(Main, Expr(:(=), nm, val))) end end end @@ -1646,45 +1636,45 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, ## Sends all variables stored in constCell to workers dedicated to parallelization across parameters and resamplings if P > Nr * nprime + 1 # We still may need to send f to workers only calculating model output?? - sendto(Distributed.workers(), constCell = constCell) + sendto(Distributed.workers(); constCell=constCell) elseif P > 1 # If there are less workers than resamplings * parameters, we send to all workers available - sendto(Distributed.workers(), constCell = constCell) + sendto(Distributed.workers(); constCell=constCell) end ### Calculating decomposed variances in parallel ### - allresults = map((kL)->eFAST_Parallel_kL(kL), 1:nprime*Nr) + allresults = map((kL) -> eFAST_Parallel_kL(kL), 1:(nprime * Nr)) ## Summing & normalizing decomposed variances to obtain sensitivity indices for k = 1:nprime # Sum of variances across all resamples - resultvec = sum(allresults[(1:Nr) .+ Nr * ( k - 1 )]) + resultvec = sum(allresults[(1:Nr) .+ Nr * (k - 1)]) ## Calculating Sensitivity indices (main and total) - V = resultvec[:,1] ./ Nr - Vi = 2 * resultvec[:,2] ./ Nr - Vci = 2 * resultvec[:,3] ./ Nr + V = resultvec[:, 1] ./ Nr + Vi = 2 * resultvec[:, 2] ./ Nr + Vci = 2 * resultvec[:, 3] ./ Nr # Main effect indices (i.e. decomposed variance, before normalization) - Var[:,k] = Vi + Var[:, k] = Vi # Normalizing vs mean over loops - Si[:,k] = Vi ./ V - Sti[:,k] = 1 .- Vci ./ V + Si[:, k] = Vi ./ V + Sti[:, k] = 1 .- Vci ./ V end # Save results as a dictionary - tes = OrderedCollections.OrderedDict{String,OrderedCollections.OrderedDict}() - mes = OrderedCollections.OrderedDict{String,OrderedCollections.OrderedDict}() - var = OrderedCollections.OrderedDict{String,OrderedCollections.OrderedDict}() - for j = eachindex(obskeys) - tes[obskeys[j]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - mes[obskeys[j]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - var[obskeys[j]] = OrderedCollections.OrderedDict{Union{String,Symbol},Float64}() - end - for k = eachindex(paramkeys) - for j = eachindex(obskeys) - var[obskeys[j]][paramkeys[k]] = Var[j,k] - tes[obskeys[j]][paramkeys[k]] = Sti[j,k] - mes[obskeys[j]][paramkeys[k]] = Si[j,k] + tes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict}() + mes = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict}() + var = OrderedCollections.OrderedDict{String, OrderedCollections.OrderedDict}() + for j in eachindex(obskeys) + tes[obskeys[j]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + mes[obskeys[j]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + var[obskeys[j]] = OrderedCollections.OrderedDict{Union{String, Symbol}, Float64}() + end + for k in eachindex(paramkeys) + for j in eachindex(obskeys) + var[obskeys[j]][paramkeys[k]] = Var[j, k] + tes[obskeys[j]][paramkeys[k]] = Sti[j, k] + mes[obskeys[j]][paramkeys[k]] = Si[j, k] end end result = Dict("mes" => mes, "tes" => tes, "var" => var, "samplesize" => Ns_total, "method" => "efast", "seed" => seed) @@ -1700,4 +1690,4 @@ function efast(md::AbstractDict; N::Integer=100, M::Integer=6, gamma::Number=4, JLD2.save(filename, "efast_results", result) end return result -end +end \ No newline at end of file