forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov8_l_syncbn_fast_8xb16-500e_coco.py
39 lines (33 loc) · 1.18 KB
/
yolov8_l_syncbn_fast_8xb16-500e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
_base_ = './yolov8_m_syncbn_fast_8xb16-500e_coco.py'
# ========================modified parameters======================
deepen_factor = 1.00
widen_factor = 1.00
last_stage_out_channels = 512
mixup_prob = 0.15
# =======================Unmodified in most cases==================
pre_transform = _base_.pre_transform
mosaic_affine_transform = _base_.mosaic_affine_transform
last_transform = _base_.last_transform
model = dict(
backbone=dict(
last_stage_out_channels=last_stage_out_channels,
deepen_factor=deepen_factor,
widen_factor=widen_factor),
neck=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=[256, 512, last_stage_out_channels],
out_channels=[256, 512, last_stage_out_channels]),
bbox_head=dict(
head_module=dict(
widen_factor=widen_factor,
in_channels=[256, 512, last_stage_out_channels])))
train_pipeline = [
*pre_transform, *mosaic_affine_transform,
dict(
type='YOLOv5MixUp',
prob=mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_transform]),
*last_transform
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))