forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppyoloe_plus_s_fast_8xb8-80e_coco.py
239 lines (222 loc) · 7.39 KB
/
ppyoloe_plus_s_fast_8xb8-80e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
_base_ = ['../_base_/default_runtime.py', '../_base_/det_p5_tta.py']
# dataset settings
data_root = 'data/coco/'
dataset_type = 'YOLOv5CocoDataset'
# parameters that often need to be modified
img_scale = (640, 640) # width, height
deepen_factor = 0.33
widen_factor = 0.5
max_epochs = 80
num_classes = 80
save_epoch_intervals = 5
train_batch_size_per_gpu = 8
train_num_workers = 8
val_batch_size_per_gpu = 1
val_num_workers = 2
# The pretrained model is geted and converted from official PPYOLOE.
# https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/configs/ppyoloe/README.md
load_from = 'https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_pretrain/ppyoloe_plus_s_obj365_pretrained-bcfe8478.pth' # noqa
# persistent_workers must be False if num_workers is 0.
persistent_workers = True
# Base learning rate for optim_wrapper
base_lr = 0.001
strides = [8, 16, 32]
model = dict(
type='YOLODetector',
data_preprocessor=dict(
# use this to support multi_scale training
type='PPYOLOEDetDataPreprocessor',
pad_size_divisor=32,
batch_augments=[
dict(
type='PPYOLOEBatchRandomResize',
random_size_range=(320, 800),
interval=1,
size_divisor=32,
random_interp=True,
keep_ratio=False)
],
mean=[0., 0., 0.],
std=[255., 255., 255.],
bgr_to_rgb=True),
backbone=dict(
type='PPYOLOECSPResNet',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
block_cfg=dict(
type='PPYOLOEBasicBlock', shortcut=True, use_alpha=True),
norm_cfg=dict(type='BN', momentum=0.1, eps=1e-5),
act_cfg=dict(type='SiLU', inplace=True),
attention_cfg=dict(
type='EffectiveSELayer', act_cfg=dict(type='HSigmoid')),
use_large_stem=True),
neck=dict(
type='PPYOLOECSPPAFPN',
in_channels=[256, 512, 1024],
out_channels=[192, 384, 768],
deepen_factor=deepen_factor,
widen_factor=widen_factor,
num_csplayer=1,
num_blocks_per_layer=3,
block_cfg=dict(
type='PPYOLOEBasicBlock', shortcut=False, use_alpha=False),
norm_cfg=dict(type='BN', momentum=0.1, eps=1e-5),
act_cfg=dict(type='SiLU', inplace=True),
drop_block_cfg=None,
use_spp=True),
bbox_head=dict(
type='PPYOLOEHead',
head_module=dict(
type='PPYOLOEHeadModule',
num_classes=num_classes,
in_channels=[192, 384, 768],
widen_factor=widen_factor,
featmap_strides=strides,
reg_max=16,
norm_cfg=dict(type='BN', momentum=0.1, eps=1e-5),
act_cfg=dict(type='SiLU', inplace=True),
num_base_priors=1),
prior_generator=dict(
type='mmdet.MlvlPointGenerator', offset=0.5, strides=strides),
bbox_coder=dict(type='DistancePointBBoxCoder'),
loss_cls=dict(
type='mmdet.VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
reduction='sum',
loss_weight=1.0),
loss_bbox=dict(
type='IoULoss',
iou_mode='giou',
bbox_format='xyxy',
reduction='mean',
loss_weight=2.5,
return_iou=False),
# Since the dflloss is implemented differently in the official
# and mmdet, we're going to divide loss_weight by 4.
loss_dfl=dict(
type='mmdet.DistributionFocalLoss',
reduction='mean',
loss_weight=0.5 / 4)),
train_cfg=dict(
initial_epoch=30,
initial_assigner=dict(
type='BatchATSSAssigner',
num_classes=num_classes,
topk=9,
iou_calculator=dict(type='mmdet.BboxOverlaps2D')),
assigner=dict(
type='BatchTaskAlignedAssigner',
num_classes=num_classes,
topk=13,
alpha=1,
beta=6,
eps=1e-9)),
test_cfg=dict(
multi_label=True,
nms_pre=1000,
score_thr=0.01,
nms=dict(type='nms', iou_threshold=0.7),
max_per_img=300))
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='PPYOLOERandomDistort'),
dict(type='mmdet.Expand', mean=(103.53, 116.28, 123.675)),
dict(type='PPYOLOERandomCrop'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_dataloader = dict(
batch_size=train_batch_size_per_gpu,
num_workers=train_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='yolov5_collate', use_ms_training=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=0),
pipeline=train_pipeline))
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(
type='mmdet.FixShapeResize',
width=img_scale[0],
height=img_scale[1],
keep_ratio=False,
interpolation='bicubic'),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
val_dataloader = dict(
batch_size=val_batch_size_per_gpu,
num_workers=val_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
test_mode=True,
data_prefix=dict(img='val2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=0),
ann_file='annotations/instances_val2017.json',
pipeline=test_pipeline))
test_dataloader = val_dataloader
param_scheduler = None
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='SGD',
lr=base_lr,
momentum=0.9,
weight_decay=5e-4,
nesterov=False),
paramwise_cfg=dict(norm_decay_mult=0.))
default_hooks = dict(
param_scheduler=dict(
type='PPYOLOEParamSchedulerHook',
warmup_min_iter=1000,
start_factor=0.,
warmup_epochs=5,
min_lr_ratio=0.0,
total_epochs=int(max_epochs * 1.2)),
checkpoint=dict(
type='CheckpointHook',
interval=save_epoch_intervals,
save_best='auto',
max_keep_ckpts=3))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
strict_load=False,
priority=49)
]
val_evaluator = dict(
type='mmdet.CocoMetric',
proposal_nums=(100, 1, 10),
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox')
test_evaluator = val_evaluator
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=max_epochs,
val_interval=save_epoch_intervals)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')