forked from NVIDIA/flownet2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·437 lines (338 loc) · 22.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/usr/bin/env python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
from tensorboardX import SummaryWriter
import argparse, os, sys, subprocess
import setproctitle, colorama
import numpy as np
from tqdm import tqdm
from glob import glob
from os.path import *
import models, losses, datasets
from utils import flow_utils, tools
# fp32 copy of parameters for update
global param_copy
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--start_epoch', type=int, default=1)
parser.add_argument('--total_epochs', type=int, default=10000)
parser.add_argument('--batch_size', '-b', type=int, default=8, help="Batch size")
parser.add_argument('--train_n_batches', type=int, default = -1, help='Number of min-batches per epoch. If < 0, it will be determined by training_dataloader')
parser.add_argument('--crop_size', type=int, nargs='+', default = [256, 256], help="Spatial dimension to crop training samples for training")
parser.add_argument('--gradient_clip', type=float, default=None)
parser.add_argument('--schedule_lr_frequency', type=int, default=0, help='in number of iterations (0 for no schedule)')
parser.add_argument('--schedule_lr_fraction', type=float, default=10)
parser.add_argument("--rgb_max", type=float, default = 255.)
parser.add_argument('--number_workers', '-nw', '--num_workers', type=int, default=4)
parser.add_argument('--number_gpus', '-ng', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--no_cuda', action='store_true')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--name', default='run', type=str, help='a name to append to the save directory')
parser.add_argument('--save', '-s', default='./work', type=str, help='directory for saving')
parser.add_argument('--validation_frequency', type=int, default=5, help='validate every n epochs')
parser.add_argument('--validation_n_batches', type=int, default=-1)
parser.add_argument('--render_validation', action='store_true', help='run inference (save flows to file) and every validation_frequency epoch')
parser.add_argument('--inference', action='store_true')
parser.add_argument('--inference_size', type=int, nargs='+', default = [-1,-1], help='spatial size divisible by 64. default (-1,-1) - largest possible valid size would be used')
parser.add_argument('--inference_batch_size', type=int, default=1)
parser.add_argument('--inference_n_batches', type=int, default=-1)
parser.add_argument('--save_flow', action='store_true', help='save predicted flows to file')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--log_frequency', '--summ_iter', type=int, default=1, help="Log every n batches")
parser.add_argument('--skip_training', action='store_true')
parser.add_argument('--skip_validation', action='store_true')
parser.add_argument('--fp16', action='store_true', help='Run model in pseudo-fp16 mode (fp16 storage fp32 math).')
parser.add_argument('--fp16_scale', type=float, default=1024., help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
tools.add_arguments_for_module(parser, models, argument_for_class='model', default='FlowNet2')
tools.add_arguments_for_module(parser, losses, argument_for_class='loss', default='L1Loss')
tools.add_arguments_for_module(parser, torch.optim, argument_for_class='optimizer', default='Adam', skip_params=['params'])
tools.add_arguments_for_module(parser, datasets, argument_for_class='training_dataset', default='MpiSintelFinal',
skip_params=['is_cropped'],
parameter_defaults={'root': './MPI-Sintel/flow/training'})
tools.add_arguments_for_module(parser, datasets, argument_for_class='validation_dataset', default='MpiSintelClean',
skip_params=['is_cropped'],
parameter_defaults={'root': './MPI-Sintel/flow/training',
'replicates': 1})
tools.add_arguments_for_module(parser, datasets, argument_for_class='inference_dataset', default='MpiSintelClean',
skip_params=['is_cropped'],
parameter_defaults={'root': './MPI-Sintel/flow/training',
'replicates': 1})
main_dir = os.path.dirname(os.path.realpath(__file__))
os.chdir(main_dir)
# Parse the official arguments
with tools.TimerBlock("Parsing Arguments") as block:
args = parser.parse_args()
# Get argument defaults (hastag #thisisahack)
parser.add_argument('--IGNORE', action='store_true')
defaults = vars(parser.parse_args(['--IGNORE']))
# Print all arguments, color the non-defaults
for argument, value in sorted(vars(args).items()):
reset = colorama.Style.RESET_ALL
color = reset if value == defaults[argument] else colorama.Fore.MAGENTA
block.log('{}{}: {}{}'.format(color, argument, value, reset))
args.model_class = tools.module_to_dict(models)[args.model]
args.optimizer_class = tools.module_to_dict(torch.optim)[args.optimizer]
args.loss_class = tools.module_to_dict(losses)[args.loss]
args.training_dataset_class = tools.module_to_dict(datasets)[args.training_dataset]
args.validation_dataset_class = tools.module_to_dict(datasets)[args.validation_dataset]
args.inference_dataset_class = tools.module_to_dict(datasets)[args.inference_dataset]
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.current_hash = subprocess.check_output(["git", "rev-parse", "HEAD"]).rstrip()
args.log_file = join(args.save, 'args.txt')
# dict to collect activation gradients (for training debug purpose)
args.grads = {}
if args.inference:
args.skip_validation = True
args.skip_training = True
args.total_epochs = 1
args.inference_dir = "{}/inference".format(args.save)
print('Source Code')
print(' Current Git Hash: {}\n'.format(args.current_hash))
# Change the title for `top` and `pkill` commands
setproctitle.setproctitle(args.save)
# Dynamically load the dataset class with parameters passed in via "--argument_[param]=[value]" arguments
with tools.TimerBlock("Initializing Datasets") as block:
args.effective_batch_size = args.batch_size
args.batch_size = args.effective_batch_size // args.number_gpus
gpuargs = {'num_workers': args.number_workers, 'pin_memory': True} if args.cuda else {}
if exists(args.training_dataset_root):
train_dataset = args.training_dataset_class(args, True, **tools.kwargs_from_args(args, 'training_dataset'))
block.log('Training Dataset: {}'.format(args.training_dataset))
block.log('Training Input: {}'.format(' '.join([str([d for d in x.size()]) for x in train_dataset[0][0]])))
block.log('Training Targets: {}'.format(' '.join([str([d for d in x.size()]) for x in train_dataset[0][1]])))
train_loader = DataLoader(train_dataset, batch_size=args.effective_batch_size, shuffle=True, **gpuargs)
if exists(args.validation_dataset_root):
validation_dataset = args.validation_dataset_class(args, True, **tools.kwargs_from_args(args, 'validation_dataset'))
block.log('Validation Dataset: {}'.format(args.validation_dataset))
block.log('Validation Input: {}'.format(' '.join([str([d for d in x.size()]) for x in validation_dataset[0][0]])))
block.log('Validation Targets: {}'.format(' '.join([str([d for d in x.size()]) for x in validation_dataset[0][1]])))
validation_loader = DataLoader(validation_dataset, batch_size=args.effective_batch_size, shuffle=False, **gpuargs)
if exists(args.inference_dataset_root):
inference_dataset = args.inference_dataset_class(args, False, **tools.kwargs_from_args(args, 'inference_dataset'))
block.log('Inference Dataset: {}'.format(args.inference_dataset))
block.log('Inference Input: {}'.format(' '.join([str([d for d in x.size()]) for x in inference_dataset[0][0]])))
block.log('Inference Targets: {}'.format(' '.join([str([d for d in x.size()]) for x in inference_dataset[0][1]])))
inference_loader = DataLoader(inference_dataset, batch_size=args.inference_batch_size, shuffle=False, **gpuargs)
# Dynamically load model and loss class with parameters passed in via "--model_[param]=[value]" or "--loss_[param]=[value]" arguments
with tools.TimerBlock("Building {} model".format(args.model)) as block:
class ModelAndLoss(nn.Module):
def __init__(self, args):
super(ModelAndLoss, self).__init__()
kwargs = tools.kwargs_from_args(args, 'model')
self.model = args.model_class(args, **kwargs)
kwargs = tools.kwargs_from_args(args, 'loss')
self.loss = args.loss_class(args, **kwargs)
def forward(self, data, target, inference=False ):
output = self.model(data)
loss_values = self.loss(output, target)
if not inference :
return loss_values
else :
return loss_values, output
model_and_loss = ModelAndLoss(args)
block.log('Effective Batch Size: {}'.format(args.effective_batch_size))
block.log('Number of parameters: {}'.format(sum([p.data.nelement() if p.requires_grad else 0 for p in model_and_loss.parameters()])))
# assing to cuda or wrap with dataparallel, model and loss
if args.cuda and (args.number_gpus > 0) and args.fp16:
block.log('Parallelizing')
model_and_loss = nn.parallel.DataParallel(model_and_loss, device_ids=list(range(args.number_gpus)))
block.log('Initializing CUDA')
model_and_loss = model_and_loss.cuda().half()
torch.cuda.manual_seed(args.seed)
param_copy = [param.clone().type(torch.cuda.FloatTensor).detach() for param in model_and_loss.parameters()]
elif args.cuda and args.number_gpus > 0:
block.log('Initializing CUDA')
model_and_loss = model_and_loss.cuda()
block.log('Parallelizing')
model_and_loss = nn.parallel.DataParallel(model_and_loss, device_ids=list(range(args.number_gpus)))
torch.cuda.manual_seed(args.seed)
else:
block.log('CUDA not being used')
torch.manual_seed(args.seed)
# Load weights if needed, otherwise randomly initialize
if args.resume and os.path.isfile(args.resume):
block.log("Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
if not args.inference:
args.start_epoch = checkpoint['epoch']
best_err = checkpoint['best_EPE']
model_and_loss.module.model.load_state_dict(checkpoint['state_dict'])
block.log("Loaded checkpoint '{}' (at epoch {})".format(args.resume, checkpoint['epoch']))
elif args.resume and args.inference:
block.log("No checkpoint found at '{}'".format(args.resume))
quit()
else:
block.log("Random initialization")
block.log("Initializing save directory: {}".format(args.save))
if not os.path.exists(args.save):
os.makedirs(args.save)
train_logger = SummaryWriter(log_dir = os.path.join(args.save, 'train'), comment = 'training')
validation_logger = SummaryWriter(log_dir = os.path.join(args.save, 'validation'), comment = 'validation')
# Dynamically load the optimizer with parameters passed in via "--optimizer_[param]=[value]" arguments
with tools.TimerBlock("Initializing {} Optimizer".format(args.optimizer)) as block:
kwargs = tools.kwargs_from_args(args, 'optimizer')
if args.fp16:
optimizer = args.optimizer_class(filter(lambda p: p.requires_grad, param_copy), **kwargs)
else:
optimizer = args.optimizer_class(filter(lambda p: p.requires_grad, model_and_loss.parameters()), **kwargs)
for param, default in kwargs.items():
block.log("{} = {} ({})".format(param, default, type(default)))
# Log all arguments to file
for argument, value in sorted(vars(args).items()):
block.log2file(args.log_file, '{}: {}'.format(argument, value))
# Reusable function for training and validataion
def train(args, epoch, start_iteration, data_loader, model, optimizer, logger, is_validate=False, offset=0):
statistics = []
total_loss = 0
if is_validate:
model.eval()
title = 'Validating Epoch {}'.format(epoch)
args.validation_n_batches = np.inf if args.validation_n_batches < 0 else args.validation_n_batches
progress = tqdm(tools.IteratorTimer(data_loader), ncols=100, total=np.minimum(len(data_loader), args.validation_n_batches), leave=True, position=offset, desc=title)
else:
model.train()
title = 'Training Epoch {}'.format(epoch)
args.train_n_batches = np.inf if args.train_n_batches < 0 else args.train_n_batches
progress = tqdm(tools.IteratorTimer(data_loader), ncols=120, total=np.minimum(len(data_loader), args.train_n_batches), smoothing=.9, miniters=1, leave=True, position=offset, desc=title)
last_log_time = progress._time()
for batch_idx, (data, target) in enumerate(progress):
data, target = [Variable(d, volatile = is_validate) for d in data], [Variable(t, volatile = is_validate) for t in target]
if args.cuda and args.number_gpus == 1:
data, target = [d.cuda(async=True) for d in data], [t.cuda(async=True) for t in target]
optimizer.zero_grad() if not is_validate else None
losses = model(data[0], target[0])
losses = [torch.mean(loss_value) for loss_value in losses]
loss_val = losses[0] # Collect first loss for weight update
total_loss += loss_val.data[0]
loss_values = [v.data[0] for v in losses]
# gather loss_labels, direct return leads to recursion limit error as it looks for variables to gather'
loss_labels = list(model.module.loss.loss_labels)
assert not np.isnan(total_loss)
if not is_validate and args.fp16:
loss_val.backward()
if args.gradient_clip:
torch.nn.utils.clip_grad_norm(model.parameters(), args.gradient_clip)
params = list(model.parameters())
for i in range(len(params)):
param_copy[i].grad = params[i].grad.clone().type_as(params[i]).detach()
param_copy[i].grad.mul_(1./args.loss_scale)
optimizer.step()
for i in range(len(params)):
params[i].data.copy_(param_copy[i].data)
elif not is_validate:
loss_val.backward()
if args.gradient_clip:
torch.nn.utils.clip_grad_norm(model.parameters(), args.gradient_clip)
optimizer.step()
# Update hyperparameters if needed
global_iteration = start_iteration + batch_idx
if not is_validate:
tools.update_hyperparameter_schedule(args, epoch, global_iteration, optimizer)
loss_labels.append('lr')
loss_values.append(optimizer.param_groups[0]['lr'])
loss_labels.append('load')
loss_values.append(progress.iterable.last_duration)
# Print out statistics
statistics.append(loss_values)
title = '{} Epoch {}'.format('Validating' if is_validate else 'Training', epoch)
progress.set_description(title + ' ' + tools.format_dictionary_of_losses(loss_labels, statistics[-1]))
if ((((global_iteration + 1) % args.log_frequency) == 0 and not is_validate) or
(is_validate and batch_idx == args.validation_n_batches - 1)):
global_iteration = global_iteration if not is_validate else start_iteration
logger.add_scalar('batch logs per second', len(statistics) / (progress._time() - last_log_time), global_iteration)
last_log_time = progress._time()
all_losses = np.array(statistics)
for i, key in enumerate(loss_labels):
logger.add_scalar('average batch ' + str(key), all_losses[:, i].mean(), global_iteration)
logger.add_histogram(str(key), all_losses[:, i], global_iteration)
# Reset Summary
statistics = []
if ( is_validate and ( batch_idx == args.validation_n_batches) ):
break
if ( (not is_validate) and (batch_idx == (args.train_n_batches)) ):
break
progress.close()
return total_loss / float(batch_idx + 1), (batch_idx + 1)
# Reusable function for inference
def inference(args, epoch, data_loader, model, offset=0):
model.eval()
if args.save_flow or args.render_validation:
flow_folder = "{}/{}.epoch-{}-flow-field".format(args.inference_dir,args.name.replace('/', '.'),epoch)
if not os.path.exists(flow_folder):
os.makedirs(flow_folder)
args.inference_n_batches = np.inf if args.inference_n_batches < 0 else args.inference_n_batches
progress = tqdm(data_loader, ncols=100, total=np.minimum(len(data_loader), args.inference_n_batches), desc='Inferencing ',
leave=True, position=offset)
statistics = []
total_loss = 0
for batch_idx, (data, target) in enumerate(progress):
if args.cuda:
data, target = [d.cuda(async=True) for d in data], [t.cuda(async=True) for t in target]
data, target = [Variable(d, volatile = True) for d in data], [Variable(t, volatile = True) for t in target]
# when ground-truth flows are not available for inference_dataset,
# the targets are set to all zeros. thus, losses are actually L1 or L2 norms of compute optical flows,
# depending on the type of loss norm passed in
losses, output = model(data[0], target[0], inference=True)
losses = [torch.mean(loss_value) for loss_value in losses]
loss_val = losses[0] # Collect first loss for weight update
total_loss += loss_val.data[0]
loss_values = [v.data[0] for v in losses]
# gather loss_labels, direct return leads to recursion limit error as it looks for variables to gather'
loss_labels = list(model.module.loss.loss_labels)
statistics.append(loss_values)
# import IPython; IPython.embed()
if args.save_flow or args.render_validation:
for i in range(args.inference_batch_size):
_pflow = output[i].data.cpu().numpy().transpose(1, 2, 0)
flow_utils.writeFlow( join(flow_folder, '%06d.flo'%(batch_idx * args.inference_batch_size + i)), _pflow)
progress.set_description('Inference Averages for Epoch {}: '.format(epoch) + tools.format_dictionary_of_losses(loss_labels, np.array(statistics).mean(axis=0)))
progress.update(1)
if batch_idx == (args.inference_n_batches - 1):
break
progress.close()
return
# Primary epoch loop
best_err = 1e8
progress = tqdm(range(args.start_epoch, args.total_epochs + 1), miniters=1, ncols=100, desc='Overall Progress', leave=True, position=0)
offset = 1
last_epoch_time = progress._time()
global_iteration = 0
for epoch in progress:
if args.inference or (args.render_validation and ((epoch - 1) % args.validation_frequency) == 0):
stats = inference(args=args, epoch=epoch - 1, data_loader=inference_loader, model=model_and_loss, offset=offset)
offset += 1
if not args.skip_validation and ((epoch - 1) % args.validation_frequency) == 0:
validation_loss, _ = train(args=args, epoch=epoch - 1, start_iteration=global_iteration, data_loader=validation_loader, model=model_and_loss, optimizer=optimizer, logger=validation_logger, is_validate=True, offset=offset)
offset += 1
is_best = False
if validation_loss < best_err:
best_err = validation_loss
is_best = True
checkpoint_progress = tqdm(ncols=100, desc='Saving Checkpoint', position=offset)
tools.save_checkpoint({ 'arch' : args.model,
'epoch': epoch,
'state_dict': model_and_loss.module.model.state_dict(),
'best_EPE': best_err},
is_best, args.save, args.model)
checkpoint_progress.update(1)
checkpoint_progress.close()
offset += 1
if not args.skip_training:
train_loss, iterations = train(args=args, epoch=epoch, start_iteration=global_iteration, data_loader=train_loader, model=model_and_loss, optimizer=optimizer, logger=train_logger, offset=offset)
global_iteration += iterations
offset += 1
# save checkpoint after every validation_frequency number of epochs
if ((epoch - 1) % args.validation_frequency) == 0:
checkpoint_progress = tqdm(ncols=100, desc='Saving Checkpoint', position=offset)
tools.save_checkpoint({ 'arch' : args.model,
'epoch': epoch,
'state_dict': model_and_loss.module.model.state_dict(),
'best_EPE': train_loss},
False, args.save, args.model, filename = 'train-checkpoint.pth.tar')
checkpoint_progress.update(1)
checkpoint_progress.close()
train_logger.add_scalar('seconds per epoch', progress._time() - last_epoch_time, epoch)
last_epoch_time = progress._time()
print("\n")