forked from hityzy1122/opencv_transforms_torchvision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvfunctional.py
906 lines (722 loc) · 33.1 KB
/
cvfunctional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
from __future__ import division
import torch
import math
import random
from PIL import Image
import cv2
import numpy as np
import numbers
import types
import collections
import warnings
import matplotlib.pyplot as plt
from torchvision.transforms import functional
import PIL
INTER_MODE = {'NEAREST': cv2.INTER_NEAREST, 'BILINEAR': cv2.INTER_LINEAR, 'BICUBIC': cv2.INTER_CUBIC}
PAD_MOD = {'constant': cv2.BORDER_CONSTANT,
'edge': cv2.BORDER_REPLICATE,
'reflect': cv2.BORDER_DEFAULT,
'symmetric': cv2.BORDER_REFLECT
}
def imshow(inps, title=None):
"""Imshow for Tensor."""
subwindows = len(inps)
for idx, (inp, name) in enumerate(zip(inps, title)):
inp = inp.numpy().transpose((1, 2, 0))
ax = plt.subplot(1, subwindows, idx+1)
ax.axis('off')
plt.imshow(inp)
ax.set_title(name)
# plt.pause(0.001)
plt.show()
# plt.waitforbuttonpress(-1)
def _is_tensor_image(img):
return torch.is_tensor(img) and img.ndimension() == 3
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def to_tensor(pic):
"""Converts a numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
Args:
pic (np.ndarray, torch.Tensor): Image to be converted to tensor, (H x W x C[RGB]).
Returns:
Tensor: Converted image.
"""
if _is_numpy_image(pic):
if len(pic.shape) == 2:
pic = cv2.cvtColor(pic, cv2.COLOR_GRAY2RGB)
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
if isinstance(img, torch.ByteTensor) or img.max() > 1:
return img.float().div(255)
else:
return img
elif _is_tensor_image(pic):
return pic
else:
try:
return to_tensor(np.array(pic))
except Exception:
raise TypeError('pic should be ndarray. Got {}'.format(type(pic)))
def to_cv_image(pic, mode=None):
"""Convert a tensor to an ndarray.
Args:
pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
mode (str): color space and pixel depth of input data (optional)
for example: cv2.COLOR_RGB2BGR.
Returns:
np.array: Image converted to PIL Image.
"""
if not (_is_numpy_image(pic) or _is_tensor_image(pic)):
raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))
npimg = pic
if isinstance(pic, torch.FloatTensor):
pic = pic.mul(255).byte()
if torch.is_tensor(pic):
npimg = np.squeeze(np.transpose(pic.numpy(), (1, 2, 0)))
if not isinstance(npimg, np.ndarray):
raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
'not {}'.format(type(npimg)))
if mode is None:
return npimg
else:
return cv2.cvtColor(npimg, mode)
def normalize(tensor, mean, std):
"""Normalize a tensor image with mean and standard deviation.
See ``Normalize`` for more details.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channely.
Returns:
Tensor: Normalized Tensor image.
"""
if _is_tensor_image(tensor):
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor
elif _is_numpy_image(tensor):
return (tensor.astype(np.float32) - 255.0 * np.array(mean))/np.array(std)
else:
raise RuntimeError('Undefined type')
def resize(img, size, interpolation='BILINEAR'):
"""Resize the input CV Image to the given size.
Args:
img (np.ndarray): Image to be resized.
size (tuple or int): Desired output size. If size is a sequence like
(h, w), the output size will be matched to this. If size is an int,
the smaller edge of the image will be matched to this number maintaing
the aspect ratio. i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (str, optional): Desired interpolation. Default is ``BILINEAR``
Returns:
cv Image: Resized image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
if not (isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
if isinstance(size, int):
h, w, c = img.shape
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return cv2.resize(img, dsize=(ow, oh), interpolation=INTER_MODE[interpolation])
else:
oh = size
ow = int(size * w / h)
return cv2.resize(img, dsize=(ow, oh), interpolation=INTER_MODE[interpolation])
else:
oh, ow = size
return cv2.resize(img, dsize=(int(ow), int(oh)), interpolation=INTER_MODE[interpolation])
def to_rgb_bgr(pic):
"""Converts a color image stored in BGR sequence to RGB (BGR to RGB)
or stored in RGB sequence to BGR (RGB to BGR).
Args:
pic (np.ndarray, torch.Tensor): Image to be converted, (H x W x 3).
Returns:
Tensor: Converted image.
"""
if _is_numpy_image(pic) or _is_tensor_image(pic):
img = pic[:, :, [2, 1, 0]]
return img
else:
try:
return to_rgb_bgr(np.array(pic))
except Exception:
raise TypeError('pic should be numpy.ndarray or torch.Tensor. Got {}'.format(type(pic)))
def pad(img, padding, fill=(0, 0, 0), padding_mode='constant'):
"""Pad the given CV Image on all sides with speficified padding mode and fill value.
Args:
img (np.ndarray): Image to be padded.
padding (int or tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (int, tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
constant: pads with a constant value, this value is specified with fill
edge: pads with the last value on the edge of the image
reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
CV Image: Padded image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
if not isinstance(padding, (numbers.Number, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]:
raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, collections.Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, collections.Sequence) and len(padding) == 4:
pad_left, pad_top, pad_right, pad_bottom = padding
if isinstance(fill, numbers.Number):
fill = (fill,) * (2 * len(img.shape) - 3)
if padding_mode == 'constant':
assert (len(fill) == 3 and len(img.shape) == 3) or (len(fill) == 1 and len(img.shape) == 2), \
'channel of image is {} but length of fill is {}'.format(img.shape[-1], len(fill))
img = cv2.copyMakeBorder(src=img, top=pad_top, bottom=pad_bottom, left=pad_left, right=pad_right,
borderType=PAD_MOD[padding_mode], value=fill)
return img
def crop(img, x, y, h, w):
"""Crop the given CV Image.
Args:
img (np.ndarray): Image to be cropped.
x: Upper pixel coordinate.
y: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
Returns:
CV Image: Cropped image.
"""
assert _is_numpy_image(img), 'img should be CV Image. Got {}'.format(type(img))
assert h > 0 and w > 0, 'h={} and w={} should greater than 0'.format(h, w)
x1, y1, x2, y2 = round(x), round(y), round(x+h), round(y+w)
try:
check_point1 = img[x1, y1, ...]
check_point2 = img[x2-1, y2-1, ...]
except IndexError:
# warnings.warn('crop region is {} but image size is {}'.format((x1, y1, x2, y2), img.shape))
img = cv2.copyMakeBorder(img, - min(0, x1), max(x2 - img.shape[0], 0),
-min(0, y1), max(y2 - img.shape[1], 0), cv2.BORDER_CONSTANT, value=[0, 0, 0])
y2 += -min(0, y1)
y1 += -min(0, y1)
x2 += -min(0, x1)
x1 += -min(0, x1)
finally:
return img[x1:x2, y1:y2, ...].copy()
def center_crop(img, output_size):
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
h, w, _ = img.shape
th, tw = output_size
i = int(round((h - th) * 0.5))
j = int(round((w - tw) * 0.5))
return crop(img, i, j, th, tw)
def resized_crop(img, i, j, h, w, size, interpolation='BILINEAR'):
"""Crop the given CV Image and resize it to desired size. Notably used in RandomResizedCrop.
Args:
img (np.ndarray): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
size (sequence or int): Desired output size. Same semantics as ``scale``.
interpolation (str, optional): Desired interpolation. Default is
``BILINEAR``.
Returns:
np.ndarray: Cropped image.
"""
assert _is_numpy_image(img), 'img should be CV Image'
img = crop(img, i, j, h, w)
img = resize(img, size, interpolation)
return img
def hflip(img):
"""Horizontally flip the given PIL Image.
Args:
img (np.ndarray): Image to be flipped.
Returns:
np.ndarray: Horizontall flipped image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
return cv2.flip(img, 1)
def vflip(img):
"""Vertically flip the given PIL Image.
Args:
img (CV Image): Image to be flipped.
Returns:
PIL Image: Vertically flipped image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return cv2.flip(img, 0)
def five_crop(img, size):
"""Crop the given CV Image into four corners and the central crop.
.. Note::
This transform returns a tuple of images and there may be a
mismatch in the number of inputs and targets your ``Dataset`` returns.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
Returns:
tuple: tuple (tl, tr, bl, br, center) corresponding top left,
top right, bottom left, bottom right and center crop.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
h, w, _ = img.shape
crop_h, crop_w = size
if crop_w > w or crop_h > h:
raise ValueError("Requested crop size {} is bigger than input size {}".format(size,
(h, w)))
tl = crop(img, 0, 0, crop_h, crop_w)
tr = crop(img, 0, w - crop_w, crop_h, crop_w)
bl = crop(img, h - crop_h, 0, crop_h, crop_w)
br = crop(img, h - crop_h, w - crop_w, crop_h, crop_w)
center = center_crop(img, (crop_h, crop_w))
return (tl, tr, bl, br, center)
def ten_crop(img, size, vertical_flip=False):
"""Crop the given CV Image into four corners and the central crop plus the
flipped version of these (horizontal flipping is used by default).
.. Note::
This transform returns a tuple of images and there may be a
mismatch in the number of inputs and targets your ``Dataset`` returns.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
vertical_flip (bool): Use vertical flipping instead of horizontal
Returns:
tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip,
br_flip, center_flip) corresponding top left, top right,
bottom left, bottom right and center crop and same for the
flipped image.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
first_five = five_crop(img, size)
if vertical_flip:
img = vflip(img)
else:
img = hflip(img)
second_five = five_crop(img, size)
return first_five + second_five
def adjust_brightness(img, brightness_factor):
"""Adjust brightness of an Image.
Args:
img (np.ndarray): CV Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
np.ndarray: Brightness adjusted image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
im = img.astype(np.float32) * brightness_factor
im = im.clip(min=0, max=255)
return im.astype(img.dtype)
def adjust_contrast(img, contrast_factor):
"""Adjust contrast of an Image.
Args:
img (np.ndarray): CV Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
np.ndarray: Contrast adjusted image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
im = img.astype(np.float32)
mean = round(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY).mean())
im = (1-contrast_factor)*mean + contrast_factor * im
im = im.clip(min=0, max=255)
return im.astype(img.dtype)
def adjust_saturation(img, saturation_factor):
"""Adjust color saturation of an image.
Args:
img (np.ndarray): CV Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a gray image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
np.ndarray: Saturation adjusted image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
im = img.astype(np.float32)
degenerate = cv2.cvtColor(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB)
im = (1-saturation_factor) * degenerate + saturation_factor * im
im = im.clip(min=0, max=255)
return im.astype(img.dtype)
def adjust_hue(img, hue_factor):
"""Adjust hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
See https://en.wikipedia.org/wiki/Hue for more details on Hue.
Args:
img (np.ndarray): CV Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
np.ndarray: Hue adjusted image.
"""
if not(-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
im = img.astype(np.uint8)
hsv = cv2.cvtColor(im, cv2.COLOR_RGB2HSV_FULL)
hsv[..., 0] += np.uint8(hue_factor * 255)
im = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB_FULL)
return im.astype(img.dtype)
def adjust_gamma(img, gamma, gain=1):
"""Perform gamma correction on an image.
Also known as Power Law Transform. Intensities in RGB mode are adjusted
based on the following equation:
I_out = 255 * gain * ((I_in / 255) ** gamma)
See https://en.wikipedia.org/wiki/Gamma_correction for more details.
Args:
img (np.ndarray): CV Image to be adjusted.
gamma (float): Non negative real number. gamma larger than 1 make the
shadows darker, while gamma smaller than 1 make dark regions
lighter.
gain (float): The constant multiplier.
"""
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
if gamma < 0:
raise ValueError('Gamma should be a non-negative real number')
im = img.astype(np.float32)
im = 255. * gain * np.power(im / 255., gamma)
im = im.clip(min=0., max=255.)
return im.astype(img.dtype)
def to_grayscale(img, num_output_channels=1):
"""Convert image to grayscale version of image.
Args:
img (np.ndarray): Image to be converted to grayscale.
Returns:
CV Image: Grayscale version of the image.
if num_output_channels == 1 : returned image is single channel
if num_output_channels == 3 : returned image is 3 channel with r == g == b
"""
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
if num_output_channels == 1:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
elif num_output_channels == 3:
img = cv2.cvtColor(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB)
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img
def rotate(img, angle, resample='BILINEAR', expand=False, center=None):
"""Rotate the image by angle.
Args:
img (PIL Image): PIL Image to be rotated.
angle ({float, int}): In degrees clockwise order.
resample ({NEAREST, BILINEAR, BICUBIC}, optional):
An optional resampling filter.
See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
imgtype = img.dtype
if not _is_numpy_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
h, w, _ = img.shape
point = center or (w/2, h/2)
M = cv2.getRotationMatrix2D(point, angle=-angle, scale=1)
if expand:
if center is None:
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - point[0]
M[1, 2] += (nH / 2) - point[1]
# perform the actual rotation and return the image
dst = cv2.warpAffine(img, M, (nW, nH))
else:
xx = []
yy = []
for point in (np.array([0, 0, 1]), np.array([w-1, 0, 1]), np.array([w-1, h-1, 1]), np.array([0, h-1, 1])):
target = M@point
xx.append(target[0])
yy.append(target[1])
nh = int(math.ceil(max(yy)) - math.floor(min(yy)))
nw = int(math.ceil(max(xx)) - math.floor(min(xx)))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nw - w)/2
M[1, 2] += (nh - h)/2
dst = cv2.warpAffine(img, M, (nw, nh), flags=INTER_MODE[resample])
else:
dst = cv2.warpAffine(img, M, (w, h), flags=INTER_MODE[resample])
return dst.astype(imgtype)
def affine6(img, anglez=0, shear=0, translate=(0, 0), scale=(1, 1), resample='BILINEAR', fillcolor=(0, 0, 0)):
"""Apply affine transformation on the image keeping image center invariant
Args:
img (np.ndarray): PIL Image to be rotated.
anglez (float): rotation angle in degrees around Z between -180 and 180, clockwise direction.
shear (float): rotation angle in degrees around Z between -180 and 180, clockwise direction.
translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
scale (float, or tuple): overall scale
resample ({NEAREST, BILINEAR, BICUBIC}, optional):
fillcolor (int or tuple): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
"""
imgtype = img.dtype
gray_scale = False
if len(img.shape) == 2:
gray_scale = True
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
rows, cols, _ = img.shape
centery = rows * 0.5
centerx = cols * 0.5
alpha = math.radians(shear)
beta = math.radians(anglez)
lambda1 = scale[0]
lambda2 = scale[1]
tx = translate[0]
ty = translate[1]
sina = math.sin(alpha)
cosa = math.cos(alpha)
sinb = math.sin(beta)
cosb = math.cos(beta)
M00 = cosb * (lambda1 * cosa ** 2 + lambda2 * sina ** 2) - sinb * (lambda2 - lambda1) * sina * cosa
M01 = - sinb * (lambda1 * sina ** 2 + lambda2 * cosa ** 2) + cosb * (lambda2 - lambda1) * sina * cosa
M10 = sinb * (lambda1 * cosa ** 2 + lambda2 * sina ** 2) + cosb * (lambda2 - lambda1) * sina * cosa
M11 = + cosb * (lambda1 * sina ** 2 + lambda2 * cosa ** 2) + sinb * (lambda2 - lambda1) * sina * cosa
M02 = centerx - M00 * centerx - M01 * centery + tx
M12 = centery - M10 * centerx - M11 * centery + ty
affine_matrix = np.array([[M00, M01, M02], [M10, M11, M12]], dtype=np.float32)
dst_img = cv2.warpAffine(img, affine_matrix, (cols, rows), flags=INTER_MODE[resample],
borderMode=cv2.BORDER_CONSTANT, borderValue=fillcolor)
if gray_scale:
dst_img = cv2.cvtColor(dst_img, cv2.COLOR_RGB2GRAY)
return dst_img.astype(imgtype)
def affine(img, angle=0, translate=(0, 0), scale=1, shear=0, resample='BILINEAR', fillcolor=(0,0,0)):
"""Apply affine transformation on the image keeping image center invariant
Args:
img (np.ndarray): PIL Image to be rotated.
angle ({float, int}): rotation angle in degrees between -180 and 180, clockwise direction.
translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
scale (float): overall scale
shear (float): shear angle value in degrees between -180 to 180, clockwise direction.
resample ({NEAREST, BILINEAR, BICUBIC}, optional):
An optional resampling filter.
See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
fillcolor (int or tuple): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
"""
imgtype = img.dtype
if not _is_numpy_image(img):
raise TypeError('img should be CV Image. Got {}'.format(type(img)))
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"Argument translate should be a list or tuple of length 2"
assert scale > 0.0, "Argument scale should be positive"
gray_scale = False
if len(img.shape) == 2:
gray_scale = True
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
rows, cols, _ = img.shape
center = (cols * 0.5, rows * 0.5)
angle = math.radians(angle)
shear = math.radians(shear)
M00 = math.cos(angle)*scale
M01 = -math.sin(angle+shear)*scale
M10 = math.sin(angle)*scale
M11 = math.cos(angle+shear)*scale
M02 = center[0] - center[0]*M00 - center[1]*M01 + translate[0]
M12 = center[1] - center[0]*M10 - center[1]*M11 + translate[1]
affine_matrix = np.array([[M00, M01, M02], [M10, M11, M12]], dtype=np.float32)
dst_img = cv2.warpAffine(img, affine_matrix, (cols, rows), flags=INTER_MODE[resample],
borderMode=cv2.BORDER_CONSTANT, borderValue=fillcolor)
if gray_scale:
dst_img = cv2.cvtColor(dst_img, cv2.COLOR_RGB2GRAY)
return dst_img.astype(imgtype)
def perspective(img, fov=45, anglex=0, angley=0, anglez=0, shear=0,
translate=(0, 0), scale=(1, 1), resample='BILINEAR', fillcolor=(0, 0, 0)):
"""
This function is partly referred to https://blog.csdn.net/dcrmg/article/details/80273818
"""
imgtype = img.dtype
gray_scale = False
if len(img.shape) == 2:
gray_scale = True
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
h, w, _ = img.shape
centery = h * 0.5
centerx = w * 0.5
alpha = math.radians(shear)
beta = math.radians(anglez)
lambda1 = scale[0]
lambda2 = scale[1]
tx = translate[0]
ty = translate[1]
sina = math.sin(alpha)
cosa = math.cos(alpha)
sinb = math.sin(beta)
cosb = math.cos(beta)
M00 = cosb * (lambda1 * cosa ** 2 + lambda2 * sina ** 2) - sinb * (lambda2 - lambda1) * sina * cosa
M01 = - sinb * (lambda1 * sina ** 2 + lambda2 * cosa ** 2) + cosb * (lambda2 - lambda1) * sina * cosa
M10 = sinb * (lambda1 * cosa ** 2 + lambda2 * sina ** 2) + cosb * (lambda2 - lambda1) * sina * cosa
M11 = + cosb * (lambda1 * sina ** 2 + lambda2 * cosa ** 2) + sinb * (lambda2 - lambda1) * sina * cosa
M02 = centerx - M00 * centerx - M01 * centery + tx
M12 = centery - M10 * centerx - M11 * centery + ty
affine_matrix = np.array([[M00, M01, M02], [M10, M11, M12], [0, 0, 1]], dtype=np.float32)
# -------------------------------------------------------------------------------
z = np.sqrt(w ** 2 + h ** 2) / 2 / np.tan(math.radians(fov / 2))
radx = math.radians(anglex)
rady = math.radians(angley)
sinx = math.sin(radx)
cosx = math.cos(radx)
siny = math.sin(rady)
cosy = math.cos(rady)
r = np.array([[cosy, 0, -siny, 0],
[-siny * sinx, cosx, -sinx * cosy, 0],
[cosx * siny, sinx, cosx * cosy, 0],
[0, 0, 0, 1]])
pcenter = np.array([centerx, centery, 0, 0], np.float32)
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
p3 = np.array([0, h, 0, 0], np.float32) - pcenter
p4 = np.array([w, h, 0, 0], np.float32) - pcenter
dst1 = r.dot(p1)
dst2 = r.dot(p2)
dst3 = r.dot(p3)
dst4 = r.dot(p4)
list_dst = [dst1, dst2, dst3, dst4]
org = np.array([[0, 0],
[w, 0],
[0, h],
[w, h]], np.float32)
dst = np.zeros((4, 2), np.float32)
for i in range(4):
dst[i, 0] = list_dst[i][0] * z / (z - list_dst[i][2]) + pcenter[0]
dst[i, 1] = list_dst[i][1] * z / (z - list_dst[i][2]) + pcenter[1]
perspective_matrix = cv2.getPerspectiveTransform(org, dst)
total_matrix = perspective_matrix @ affine_matrix
result_img = cv2.warpPerspective(img, total_matrix, (w, h), flags=INTER_MODE[resample],
borderMode=cv2.BORDER_CONSTANT, borderValue=fillcolor)
if gray_scale:
result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2GRAY)
return result_img.astype(imgtype)
def gaussian_noise(img: np.ndarray, mean, std):
imgtype = img.dtype
gauss = np.random.normal(mean, std, img.shape).astype(np.float32)
noisy = np.clip((1 + gauss) * img.astype(np.float32), 0, 255)
return noisy.astype(imgtype)
def poisson_noise(img):
imgtype = img.dtype
img = img.astype(np.float32)/255.0
vals = len(np.unique(img))
vals = 2 ** np.ceil(np.log2(vals))
noisy = 255 * np.clip(np.random.poisson(img.astype(np.float32) * vals) / float(vals), 0, 1)
return noisy.astype(imgtype)
def salt_and_pepper(img, prob=0.01):
''' Adds "Salt & Pepper" noise to an image.
prob: probability (threshold) that controls level of noise
'''
imgtype = img.dtype
rnd = np.random.rand(img.shape[0], img.shape[1])
noisy = img.copy()
noisy[rnd < prob/2] = 0.0
noisy[rnd > 1 - prob/2] = 255.0
return noisy.astype(imgtype)
def cv_transform(img):
# img = resize(img, size=(100, 300))
# img = to_tensor(img)
# img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
# img = crop(img, -40, -20, 1000, 1000)
# img = center_crop(img, (310, 300))
# img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = hflip(img)
# img = vflip(img)
# tl, tr, bl, br, center = five_crop(img, 100)
# img = adjust_brightness(img, 2.1)
# img = adjust_contrast(img, 1.5)
# img = adjust_saturation(img, 2.3)
# img = adjust_hue(img, 0.5)
# img = adjust_gamma(img, gamma=3, gain=0.1)
# img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
# img = to_grayscale(img, 3)
# img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
# img = gaussion_noise(img)
# img = poisson_noise(img)
img = salt_and_pepper(img)
return to_tensor(img)
def pil_transform(img):
# img = functional.resize(img, size=(100, 300))
# img = functional.to_tensor(img)
# img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
# img = functional.crop(img, -40, -20, 1000, 1000)
# img = functional.center_crop(img, (310, 300))
# img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = functional.hflip(img)
# img = functional.vflip(img)
# tl, tr, bl, br, center = functional.five_crop(img, 100)
# img = functional.adjust_brightness(img, 2.1)
# img = functional.adjust_contrast(img, 1.5)
# img = functional.adjust_saturation(img, 2.3)
# img = functional.adjust_hue(img, 0.5)
# img = functional.adjust_gamma(img, gamma=3, gain=0.1)
# img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
# img = functional.to_grayscale(img, 3)
# img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))
return functional.to_tensor(img)
if __name__ == '__main__':
image_path = '../../cat.jpg'
cvimage = cv2.imread(image_path, cv2.IMREAD_COLOR)
cvimage = cv2.cvtColor(cvimage, cv2.COLOR_BGR2RGB)
cvimage = cv_transform(cvimage)
pilimage = Image.open(image_path).convert('RGB')
pilimage = pil_transform(pilimage)
sub = abs(cvimage - pilimage)
imshow((cvimage, pilimage, sub), ('CV', 'PIL', 'sub'))
# imshow((cvimage, pilimage), ('CV', 'PIL'))
# imshow([pilimage], ('PIL'))