forked from cvg/Hierarchical-Localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
superpoint.py
45 lines (36 loc) · 1.41 KB
/
superpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import sys
from pathlib import Path
import torch
from ..utils.base_model import BaseModel
sys.path.append(str(Path(__file__).parent / "../../third_party"))
from SuperGluePretrainedNetwork.models import superpoint # noqa E402
# The original keypoint sampling is incorrect. We patch it here but
# we don't fix it upstream to not impact exisiting evaluations.
def sample_descriptors_fix_sampling(keypoints, descriptors, s: int = 8):
"""Interpolate descriptors at keypoint locations"""
b, c, h, w = descriptors.shape
keypoints = (keypoints + 0.5) / (keypoints.new_tensor([w, h]) * s)
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
class SuperPoint(BaseModel):
default_conf = {
"nms_radius": 4,
"keypoint_threshold": 0.005,
"max_keypoints": -1,
"remove_borders": 4,
"fix_sampling": False,
}
required_inputs = ["image"]
detection_noise = 2.0
def _init(self, conf):
if conf["fix_sampling"]:
superpoint.sample_descriptors = sample_descriptors_fix_sampling
self.net = superpoint.SuperPoint(conf)
def _forward(self, data):
return self.net(data)