-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathwrap_image.py
197 lines (151 loc) · 7.69 KB
/
wrap_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""
Create a 3D object of a height field of an image wrapped around a cylinder (i.e. a height field in cylindrical
coordinates).
TODO:
- cutting edges (for cookie cutters)
usage:
python wrap_image.py -i image.png -o image.stl -ir 70.0 -or 80.0
This will wrap image.png around a solid cylinder that is 70.0 millimeters for black pixels and 80 millimeters
for white pixels. To add a hole, use the -hr command line option. Use -h to see other options.
Len Wanger
last updated: 2/15/2016
"""
import argparse
import numpy as np
import math
from PIL import Image
import pystl
from utils import Vertex3, Triangle, cylindrical_coord, calc_offset
def calc_vertices(im, inner_radius, outer_radius, z_scale, invert_offsets=False, reverse_x=False):
vertices = np.zeros((im.width, im.height, 3), dtype=float)
pi2 = math.pi * 2.0
radians_per_pixel = pi2 / float(im.width)
radius_diff = outer_radius - inner_radius
width, height = im.width, im.height
for i in range(width):
for j in range(height):
fi = float(i) if not reverse_x else float(width-i)
fj = float(j)
c_offset = calc_offset(im.getpixel((i, j)), 255.0, radius_diff, invert_offsets)
x, y = cylindrical_coord((inner_radius + c_offset), (fi * radians_per_pixel))
z = (fj)*z_scale
vertices[i][j] = (x, y, z)
return (vertices)
def draw_cylinder(stl, vertices, reverse_x=False):
width, height, _ = vertices.shape
for i in range(width-1):
for j in range(height-1):
v1 = (vertices[i][j][0], vertices[i][j][1], vertices[i][j][2])
v2 = (vertices[i+1][j][0], vertices[i+1][j][1], vertices[i+1][j][2])
v3 = (vertices[i+1][j+1][0], vertices[i+1][j+1][1], vertices[i+1][j+1][2])
v4 = (vertices[i][j+1][0], vertices[i][j+1][1], vertices[i][j+1][2])
if reverse_x:
stl.add_quad(v4, v3, v2, v1)
else:
stl.add_quad(v1, v2, v3, v4)
# add the seam (first to last)
for j in range(height-1):
v1 = (vertices[width-1][j][0], vertices[width-1][j][1], vertices[width-1][j][2])
v2 = (vertices[0][j][0], vertices[0][j][1], vertices[0][j][2])
v3 = (vertices[0][j+1][0], vertices[0][j+1][1], vertices[0][j+1][2])
v4 = (vertices[width-1][j+1][0], vertices[width-1][j+1][1], vertices[width-1][j+1][2])
if reverse_x:
stl.add_quad(v4, v3, v2, v1)
else:
stl.add_quad(v1, v2, v3, v4)
def draw_end_cap_segment(stl, vertices, i1, i2, j, radians_per_pixel, reverse_x, add_hole, hole_radius, reverse_normal):
if reverse_x:
width, _, _ = vertices.shape
fi1, fi2, fj = float(width-1-i1), float(width-1-i2), float(j)
else:
fi1, fi2, fj = float(i1), float(i2), float(j)
v1 = vertices[i1][j]
v2 = vertices[i2][j]
if add_hole:
x3 = hole_radius * math.cos((fi2) * radians_per_pixel)
y3 = hole_radius * math.sin((fi2) * radians_per_pixel)
x4 = hole_radius * math.cos((fi1) * radians_per_pixel)
y4 = hole_radius * math.sin((fi1) * radians_per_pixel)
v3 = Vertex3(x3, y3, fj*z_scale)
v4 = Vertex3(x4, y4, fj*z_scale)
if reverse_x ^ reverse_normal:
stl.add_quad(v1, v2, v3, v4)
else:
stl.add_quad(v4, v3, v2, v1)
else:
v3 = Vertex3(0.0, 0.0, fj*z_scale)
if reverse_x ^ reverse_normal:
t1 = Triangle(v1, v2, v3)
else:
t1 = Triangle(v1, v3, v2)
stl.add_triangle(t1)
def draw_end_caps(stl, vertices, j, reverse_x, add_hole=False, reverse_normal=False):
width, _, _ = vertices.shape
pi2 = math.pi * 2.0
radians_per_pixel = pi2 / float(width)
for i in range(width-1):
draw_end_cap_segment(stl, vertices, i, i+1, j, radians_per_pixel, reverse_x, add_hole, hole_radius, reverse_normal)
# Draw from 0.0 to last
draw_end_cap_segment(stl, vertices, width-1, 0, j, radians_per_pixel, reverse_x, add_hole, hole_radius, reverse_normal)
def draw_hole(stl, vertices, hole_radius, z_scale):
width, height, _ = vertices.shape
pi2 = math.pi * 2.0
radians_per_pixel = pi2 / float(width)
fj = float(height)
for i in range(width-1):
fi= float(i)
x1 = (hole_radius) * math.cos(fi * radians_per_pixel)
y1 = (hole_radius) * math.sin(fi * radians_per_pixel)
x2 = (hole_radius) * math.cos((fi+1.0) * radians_per_pixel)
y2 = (hole_radius) * math.sin((fi+1.0) * radians_per_pixel)
v1 = Vertex3(x1, y1, 0.0)
v2 = Vertex3(x2, y2, 0.0)
v3 = Vertex3(x2, y2, fj*z_scale)
v4 = Vertex3(x1, y1, fj*z_scale)
stl.add_quad(v4, v3, v2, v1)
# draw from last to first wedge
x1 = (hole_radius) * math.cos((width-1.0) * radians_per_pixel)
y1 = (hole_radius) * math.sin((width-1.0) * radians_per_pixel)
x2 = (hole_radius) * math.cos((0.0) * radians_per_pixel)
y2 = (hole_radius) * math.sin((0.0) * radians_per_pixel)
v1 = Vertex3(x1, y1, 0.0)
v2 = Vertex3(x2, y2, 0.0)
v3 = Vertex3(x2, y2, fj*z_scale)
v4 = Vertex3(x1, y1, fj*z_scale)
stl.add_quad(v4, v3, v2, v1)
if __name__ == '__main__':
# read arguments
parser = argparse.ArgumentParser(description='Wrap an image around a cylinder')
parser.add_argument('-i', '--image_file', nargs=1, help='Input image name', required=True)
parser.add_argument('-o', '--output_file', nargs=1, help='Output STL file name', required=True)
parser.add_argument('-ir', '--inner_radius', type=float, help='Radius of minimum image value (float)', default=70.0)
parser.add_argument('-or', '--outer_radius', type=float, help='Radius of maximum image value (float)', default=80.0)
parser.add_argument('-hr', '--hole_radius', type=float, help='Radius of hole (float - use negative for no hole)', default=-1.0)
parser.add_argument('-z', '--z_scale', type=float, help='Scale value for Z height (float)', default=1.0)
parser.add_argument('-rx', '--reverse_x', type=bool, help='Reverse the x axis (bool - i.e. scan clock verses counter-clockwise)', default=False)
parser.add_argument('-iz', '--invert_offsets', type=bool, help='Invert offset (bool - i.e. darker colors in image stick out further)', default=False)
parser.add_argument('-s', '--stl_type', type=str, help='STL file type - text or bin (default bin)', default='bin')
args = parser.parse_args()
img_name = args.image_file[0]
stl_name = args.output_file[0]
inner_radius = args.inner_radius
outer_radius = args.outer_radius
hole_radius = args.hole_radius
z_scale = args.z_scale
stl_type = 'txt' if args.stl_type[0]=='txt' else 'bin'
add_hole = True if hole_radius > 0.0 else False
reverse_x = True if args.reverse_x else False
invert_offsets = args.invert_offsets
radius_diff = outer_radius - inner_radius
print("Creating a cylindrical frieze for image={}, output={}".format(img_name, stl_name))
convert_to = 'L'
_ = Image.open(img_name)
im = _.convert(convert_to)
with pystl.PySTL(stl_name, bin=True) as stl:
vertices = calc_vertices(im, inner_radius, outer_radius, z_scale, invert_offsets=invert_offsets, reverse_x=reverse_x)
draw_cylinder(stl, vertices, reverse_x)
draw_end_caps(stl, vertices, 0, reverse_x, add_hole=add_hole)
draw_end_caps(stl, vertices, im.height-1, reverse_x, add_hole=add_hole, reverse_normal=True)
if add_hole:
draw_hole(stl, vertices, hole_radius, z_scale)
print("Frieze completed succesfully.")