-
Notifications
You must be signed in to change notification settings - Fork 44
/
train.py
220 lines (184 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import copy
import math
import os
from functools import partial
import numpy as np
# import wandb
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
from torch_geometric.nn import DataParallel
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1]))
import yaml
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl
from datasets.pdbbind import construct_loader
from utils.parsing import parse_train_args
from utils.training import train_epoch, test_epoch, loss_function, finetune_epoch, inference_epoch
from utils.utils import save_yaml_file, get_optimizer_and_scheduler, get_model, ExponentialMovingAverage
gpus = list(range(torch.cuda.device_count()))
print('Available GPU count:',len(gpus))
def train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir, start_epoch):
best_val_loss = math.inf
best_val_inference_value = math.inf if args.inference_earlystop_goal == 'min' else 0
best_epoch = 0
best_val_inference_epoch = 0
loss_fn = partial(loss_function, lddt_weight=args.lddt_weight, affinity_weight=args.affinity_weight, tr_weight=args.tr_weight, rot_weight=args.rot_weight,
tor_weight=args.tor_weight, res_tr_weight=args.res_tr_weight, res_rot_weight=args.res_rot_weight, res_chi_weight=args.res_chi_weight,
no_torsion=args.no_torsion)
print("Starting training...")
for epoch in range(args.n_epochs):
if epoch < start_epoch:
continue
if epoch % 5 == 0: print("Run name: ", args.run_name)
logs = {}
if not args.only_test:
train_losses = train_epoch(model, train_loader, optimizer, device, t_to_sigma, loss_fn, ema_weights)
print("Epoch {}: Training loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, train_losses['loss'], train_losses['lddt_loss'], train_losses['affinity_loss'], train_losses['tr_loss'], train_losses['rot_loss'],
train_losses['tor_loss'], train_losses['res_tr_loss'], train_losses['res_rot_loss'], train_losses['res_chi_loss']))
print("Epoch {}: Training base loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, train_losses['base_loss'], train_losses['lddt_base_loss'], train_losses['affinity_base_loss'], train_losses['tr_base_loss'], train_losses['rot_base_loss'],
train_losses['tor_base_loss'], train_losses['res_tr_base_loss'], train_losses['res_rot_base_loss'], train_losses['res_chi_base_loss']))
if args.finetune_freq != None and (epoch + 1) % args.finetune_freq == 0 and best_val_inference_value > 20.:
idxs = np.random.choice(np.arange(len(train_loader.dataset)),size=args.num_finetune_complexes,replace=False)
complex_graphs = [train_loader.dataset[i] for i in idxs]
finetune_losses, finetune_lddt_losses = finetune_epoch(model, complex_graphs, device, t_to_sigma, args, optimizer, loss_fn, ema_weights)
print("Epoch {}: Finetune loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, finetune_losses['loss'], finetune_losses['lddt_loss'], finetune_losses['affinity_loss'], finetune_losses['tr_loss'], finetune_losses['rot_loss'],
finetune_losses['tor_loss'], finetune_losses['res_tr_loss'], finetune_losses['res_rot_loss'], finetune_losses['res_chi_loss']))
print("Epoch {}: Finetune base loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, finetune_losses['base_loss'], finetune_losses['lddt_base_loss'], finetune_losses['affinity_base_loss'], finetune_losses['tr_base_loss'], finetune_losses['rot_base_loss'],
finetune_losses['tor_base_loss'], finetune_losses['res_tr_base_loss'], finetune_losses['res_rot_base_loss'], finetune_losses['res_chi_base_loss']))
print("Epoch {}: Finetune lddt loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, finetune_lddt_losses['loss'], finetune_lddt_losses['lddt_loss'], finetune_lddt_losses['affinity_loss'], finetune_lddt_losses['tr_loss'], finetune_lddt_losses['rot_loss'],
finetune_lddt_losses['tor_loss'], finetune_lddt_losses['res_tr_loss'], finetune_lddt_losses['res_rot_loss'], finetune_lddt_losses['res_chi_loss']))
print("Epoch {}: Finetune lddt base loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, finetune_lddt_losses['base_loss'], finetune_lddt_losses['lddt_base_loss'], finetune_lddt_losses['affinity_base_loss'], finetune_lddt_losses['tr_base_loss'], finetune_lddt_losses['rot_base_loss'],
finetune_lddt_losses['tor_base_loss'], finetune_lddt_losses['res_tr_base_loss'], finetune_lddt_losses['res_rot_base_loss'], finetune_lddt_losses['res_chi_base_loss']))
ema_weights.store(model.parameters())
if args.use_ema: ema_weights.copy_to(model.parameters()) # load ema parameters into model for running validation and inference
val_losses = test_epoch(model, val_loader, device, t_to_sigma, loss_fn, args.test_sigma_intervals)
print("Epoch {}: Validation loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, val_losses['loss'], val_losses['lddt_loss'], val_losses['affinity_loss'], val_losses['tr_loss'], val_losses['rot_loss'], val_losses['tor_loss'],
val_losses['res_tr_loss'], val_losses['res_rot_loss'], val_losses['res_chi_loss']))
print("Epoch {}: Validation base loss {:.4f} lddt {:.4f} affinity {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} res_tr {:.4f} res_rot {:.4f} res_chi {:.4f}"
.format(epoch, val_losses['base_loss'], val_losses['lddt_base_loss'], val_losses['affinity_base_loss'], val_losses['tr_base_loss'], val_losses['rot_base_loss'], val_losses['tor_base_loss'],
val_losses['res_tr_base_loss'], val_losses['res_rot_base_loss'], val_losses['res_chi_base_loss']))
if args.val_inference_freq != None and (epoch + 1) % args.val_inference_freq == 0:
inf_metrics = inference_epoch(model, val_loader.dataset.complex_graphs[:args.num_inference_complexes], device, t_to_sigma, args)
print("Epoch {}: Val inference lddt_rmse {:.3f} lddt_base_rmse {:.3f} lddt_pearson {:.3f} lddt_spearman {:.3f} affinity_rmse {:.3f} affinity_base_rmse {:.3f} affinity_pearson {:.3f} affinity_spearman {:.3f}"
.format(epoch, inf_metrics['lddt_rmse'], inf_metrics['lddt_base_rmse'], inf_metrics['lddt_pearson'], inf_metrics['lddt_spearman'], inf_metrics['affinity_rmse'], inf_metrics['affinity_base_rmse'], inf_metrics['affinity_pearson'], inf_metrics['affinity_spearman']))
print("Epoch {}: Val inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5']))
logs.update({'valinf_' + k: v for k, v in inf_metrics.items()}, step=epoch + 1)
else:
inf_metrics = inference_epoch(model, val_loader.dataset.complex_graphs[:args.num_inference_complexes], device, t_to_sigma, args)
print("Epoch {}: Val inference lddt_rmse {:.3f} lddt_base_rmse {:.3f} lddt_pearson {:.3f} lddt_spearman {:.3f} affinity_rmse {:.3f} affinity_base_rmse {:.3f} affinity_pearson {:.3f} affinity_spearman {:.3f}"
.format(epoch, inf_metrics['lddt_rmse'], inf_metrics['lddt_base_rmse'], inf_metrics['lddt_pearson'], inf_metrics['lddt_spearman'], inf_metrics['affinity_rmse'], inf_metrics['affinity_base_rmse'], inf_metrics['affinity_pearson'], inf_metrics['affinity_spearman']))
print("Epoch {}: Val inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5']))
assert 1==0, 'only inference test'
if not args.use_ema: ema_weights.copy_to(model.parameters())
ema_state_dict = copy.deepcopy(model.module.state_dict() if device.type == 'cuda' else model.state_dict())
ema_weights.restore(model.parameters())
if args.wandb:
logs.update({'train_' + k: v for k, v in train_losses.items()})
logs.update({'val_' + k: v for k, v in val_losses.items()})
logs['current_lr'] = optimizer.param_groups[0]['lr']
wandb.log(logs, step=epoch + 1)
state_dict = model.module.state_dict() if device.type == 'cuda' else model.state_dict()
if (epoch + 1) % args.val_inference_freq == 0:
torch.save(ema_state_dict, os.path.join(run_dir, f'ema_inference_epoch{epoch}_model.pt'))
if args.inference_earlystop_metric in logs.keys() and \
(args.inference_earlystop_goal == 'min' and logs[args.inference_earlystop_metric] <= best_val_inference_value or
args.inference_earlystop_goal == 'max' and logs[args.inference_earlystop_metric] >= best_val_inference_value):
best_val_inference_value = logs[args.inference_earlystop_metric]
best_val_inference_epoch = epoch
torch.save(state_dict, os.path.join(run_dir, 'best_inference_epoch_model.pt'))
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_inference_epoch_model.pt'))
if val_losses['loss'] <= best_val_loss:
best_val_loss = val_losses['loss']
best_epoch = epoch
torch.save(state_dict, os.path.join(run_dir, 'best_model.pt'))
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_model.pt'))
if scheduler:
if args.val_inference_freq is not None:
scheduler.step(best_val_inference_value)
else:
scheduler.step(val_losses['loss'])
torch.save({
'epoch': epoch,
'model': state_dict,
'optimizer': optimizer.state_dict(),
'ema_weights': ema_weights.state_dict(),
}, os.path.join(run_dir, 'last_model.pt'))
print("Best Validation Loss {} on Epoch {}".format(best_val_loss, best_epoch))
print("Best inference metric {} on Epoch {}".format(best_val_inference_value, best_val_inference_epoch))
def main_function():
args = parse_train_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
args.config = args.config.name
assert (args.inference_earlystop_goal == 'max' or args.inference_earlystop_goal == 'min')
if args.val_inference_freq is not None and args.scheduler is not None:
assert (args.scheduler_patience > args.val_inference_freq) # otherwise we will just stop training after args.scheduler_patience epochs
if args.cudnn_benchmark:
torch.backends.cudnn.benchmark = True
# construct loader
t_to_sigma = partial(t_to_sigma_compl, args=args)
train_loader, val_loader = construct_loader(args, t_to_sigma)
model = get_model(args, device, t_to_sigma=t_to_sigma)
# if len(gpus) > 1:
# model = DataParallel(model, device_ids=gpus, output_device=gpus[0])
optimizer, scheduler = get_optimizer_and_scheduler(args, model, scheduler_mode=args.inference_earlystop_goal if args.val_inference_freq is not None else 'min')
ema_weights = ExponentialMovingAverage(model.parameters(),decay=args.ema_rate)
start_epoch = 0
if args.restart_dir:
try:
dict = torch.load(f'{args.restart_dir}/last_model.pt', map_location=torch.device('cpu'))
if args.restart_lr is not None: dict['optimizer']['param_groups'][0]['lr'] = args.restart_lr
optimizer.load_state_dict(dict['optimizer'])
model.module.load_state_dict(dict['model'], strict=True)
if hasattr(args, 'ema_rate'):
ema_weights.load_state_dict(dict['ema_weights'], device=device)
print("Restarting from epoch", dict['epoch'])
start_epoch = dict['epoch'] + 1
except Exception as e:
print("Exception", e)
dict = torch.load(f'{args.restart_dir}/best_model.pt', map_location=torch.device('cpu'))
model.module.load_state_dict(dict, strict=True)
print("Due to exception had to take the best epoch and no optimiser")
numel = sum([p.numel() for p in model.parameters()])
print('Model with', numel, 'parameters')
if args.wandb:
wandb.init(
entity='entity',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
wandb.log({'numel': numel})
# record parameters
run_dir = os.path.join(args.log_dir, args.run_name)
if not args.only_test:
os.system(f'cp -r datasets {run_dir}')
os.system(f'cp -r models {run_dir}')
os.system(f'cp -r utils {run_dir}')
os.system(f'cp *.py {run_dir}')
os.system(f'cp *.sh {run_dir}')
yaml_file_name = os.path.join(run_dir, 'model_parameters.yml')
save_yaml_file(yaml_file_name, args.__dict__)
args.device = device
train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir, start_epoch)
if __name__ == '__main__':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
main_function()