-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_datasets.py
202 lines (143 loc) · 7.44 KB
/
make_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Not 100% finished yet
from __future__ import division
import pandas as pd
import numpy as np
#from sklearn.preprocessing import LabelEncoder
LABEL = 'returnQuantity'
def extract_non_probabilities_features(df):
# Deletions
print "\t\t WARNING: Script ini hapus: deviceID, voucherID"
del df['deviceID']
del df['voucherID']
# Total price for an order
order_total_dict = df[['orderID', 'price']].groupby('orderID').sum()['price'].to_dict()
df['order_total'] = df.orderID.apply(order_total_dict.get).astype(np.float32)
del order_total_dict
# Average budget of the customer
customer_budget_dict = df[['customerID', 'order_total']].groupby('customerID').mean()['order_total'].to_dict()
df['customer_budget'] = df.customerID.apply(customer_budget_dict.get).astype(np.float32)
del customer_budget_dict
# Customer expense ratio
total_spent_dict = df[['customerID', 'order_total']].groupby('customerID').sum()['order_total'].to_dict()
df['total_spent'] = df.customerID.apply(total_spent_dict.get).astype(np.float32)
del total_spent_dict
df['expense_ratio'] = (df['customer_budget'] / df['total_spent']).astype(np.float16)
# Total_spent dihapus. Kalau nggak mau dihapus, comment aja
del df['total_spent']
# 2 baris ini untuk mencegah `quantity = 0`, para infaqers
temp_quantity = df.quantity.copy()
temp_quantity[temp_quantity==0] = 1
# unit_price = price / quantity. by @amirahff
df['unit_price'] = (df.price/temp_quantity).astype(np.float32)
del temp_quantity
# Median unit price, the usual unit price
median_unit_price_dict = df[['articleID', 'unit_price']].groupby('articleID').median().unit_price.to_dict()
df['median_unit_price']=df.articleID.apply(median_unit_price_dict.get).astype(np.float32)
del median_unit_price_dict
df['price_diff'] = (df['unit_price']-df.median_unit_price).astype(np.float32)
# Price after discount = order_total - voucherAmount
df['after_voucher'] = df.order_total - df.voucherAmount
# Orders (as in rank)
df['order_order'] = df[['customerID', 'orderID']].groupby(['customerID']).cumcount() + 1
df['choice_order'] = df[['orderID', 'articleID']].groupby(['orderID']).cumcount() + 1
# Reduce float/int precision
float_64_columns = df.loc[:, df.dtypes == np.float64].columns
for col in float_64_columns:
df[col] = df[col].astype(np.float32)
int_64_columns = df.loc[:, df.dtypes == np.int64].columns
for col in int_64_columns:
df[col] = df[col].astype(np.int32)
return df
def extract_cumprob(df):
def append_return_cumprob(df, input_column):
target_column_name = input_column + '_cumprob'
df_temp = df[[input_column, 'returnQuantity','quantity']]
df_return_probability = df_temp.groupby(input_column)['returnQuantity','quantity'].cumsum()
df_return_probability[ target_column_name ] = df_return_probability.returnQuantity / df_return_probability.quantity
df[ target_column_name ] = df_return_probability[ target_column_name ].replace(np.NaN, 0.5).replace(np.inf, 0.5).apply(lambda x: 1 if x > 1 else x)
del df_return_probability
def append_return_cumprob_from_multiple_column(df, input_columns):
column_prefix = ''
for i in range(0,len(input_columns)):
column_prefix = column_prefix + input_columns[i][0]
target_column_name = column_prefix + '_cumprob'
print "\t\t append_return_prob_from_two_column:", input_columns, ' -> ',target_column_name
df_temp = df[ input_columns + ['returnQuantity','quantity'] ]
df_return_probability = df_temp.groupby(input_columns).cumsum()
df_return_probability[ target_column_name ] = df_return_probability.returnQuantity / df_return_probability.quantity
df[ target_column_name ] = df_return_probability[ target_column_name ].replace(np.NaN, 0.5).replace(np.inf, 0.5).apply(lambda x: 1 if x > 1 else x)
del df_return_probability
append_return_cumprob(df, 'articleID')
append_return_cumprob(df, 'colorCode')
append_return_cumprob(df, 'customerID')
append_return_cumprob(df, 'sizeCode')
append_return_cumprob_from_multiple_column(df, ['articleID', 'colorCode'])
append_return_cumprob_from_multiple_column(df, ['articleID', 'sizeCode'])
append_return_cumprob_from_multiple_column(df, ['customerID', 'productGroup', 'sizeCode'])
return df
def append_cumprob_to_tests_df(train_df, tests_df):
def append_return_prob(column, train_df, tests_df):
df2 = train_df[[column,'returnQuantity','quantity']]
df_return_probability = df2.groupby(column).sum()
df_return_probability[ column + '_cumprob' ] = df_return_probability.returnQuantity / df_return_probability.quantity
return_prob_dict = df_return_probability[ column + '_cumprob' ].to_dict()
del df_return_probability
tests_df[ column + '_cumprob' ] = tests_df[column].apply(return_prob_dict.get).replace(np.NaN, 0.5).replace(np.inf, 0.5).apply(lambda x: 1 if x > 1 else x)
del return_prob_dict
def append_return_prob_from_multiple_column(input_columns, input_df, target_df):
column_prefix = ''
for i in range(0,len(input_columns)):
column_prefix = column_prefix + input_columns[i][0]
target_column_name = column_prefix + '_cumprob'
print "\t\t append_return_prob_from_two_column:", input_columns, ' -> ',target_column_name
df_temp = input_df[ input_columns + ['returnQuantity','quantity'] ]
df_return_probability = df_temp.groupby(input_columns).sum()
df_return_probability[ target_column_name ] = df_return_probability.returnQuantity / df_return_probability.quantity
prob_dict = df_return_probability[target_column_name].to_dict()
target_df[target_column_name] = target_df[input_columns].apply(tuple, axis=1).apply(prob_dict.get).replace(np.nan, 0.5).replace(np.inf, 0.5)
del df_return_probability
append_return_prob('articleID', train_df, tests_df)
append_return_prob('colorCode', train_df, tests_df)
append_return_prob('customerID', train_df, tests_df)
append_return_prob('sizeCode', train_df, tests_df)
append_return_prob_from_multiple_column(['articleID', 'colorCode'], input_df=train_df, target_df=tests_df)
append_return_prob_from_multiple_column(['articleID', 'sizeCode'] , input_df=train_df, target_df=tests_df)
append_return_prob_from_multiple_column(['customerID', 'productGroup', 'sizeCode'] , input_df=train_df, target_df=tests_df)
return tests_df
def main():
pd.options.mode.chained_assignment = None
from datetime import datetime
time = lambda: datetime.now().time()
LABEL = 'returnQuantity'
print 'ETA: ~18 minutes'
#
print time(), 'Loading data.'
train_df = pd.read_csv('orders_train.txt', sep=';')
tests_df = pd.read_csv('orders_class.txt', sep=';')
df = pd.concat([train_df, tests_df], axis=0, ignore_index=True)
# split at the end of train_df index
split = train_df.shape[0]
# delete train_df & tests_df
#del train_df
#del tests_df
#
print time(), 'Extracting non-probabilities features.'
df = extract_non_probabilities_features(df)
#
print time(), 'Splitting dataframes.'
train_df = df[:split]
tests_df = df[split:].drop(LABEL, axis=1)
#
print time(), 'Extracting cumprob to train_df. (SLOW)'
train_df = extract_cumprob(train_df)
#
print time(), 'Extracting prob to tests_df. (SLOW)'
tests_df = append_cumprob_to_tests_df(train_df, tests_df)
#
print time(), 'Writing to CSVs. ETA 7 minutes'
train_df.to_csv('train_gue2.csv', index=False)
tests_df.to_csv('tests_gue2.csv', index=False)
#
print time(), 'Done'
if __name__ == "__main__":
main()