The following example shows how to model a two-layer neural network step by step and train from scratch In a few lines of Python code.
以下示例展示了如何逐步搭建两层神经网络模型,并通过几行Python代码从头开始进行模型训练。
import jittor as jt
import numpy as np
from jittor import nn, Module, init
The following code defines our model, which is a two-layer neural network. The size of hidden layer is 10. and the activation function is relu.
以下代码定义了我们的模型,该模型是一个两层神经网络。 隐藏层的大小为10,激活函数为relu。
### model define
class Model(Module):
def __init__(self):
self.layer1 = nn.Linear(1, 10)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(10, 1)
def execute (self,x) :
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x
At last, this model is trained from scratch. A simple gradient descent is used, and the loss function is L2 distance. The training process is asynchronous for efficiency. jittor calculates the gradients and applies graph- and operator-level optimizations via unify IR graph and jit analyzer. In this example, multiple optimizations can be used, including: operator fusion, the activation function and loss function can be fused into the first and second linear layers; Three meta-operators in matrix multiplication could also be fused. Parallelism, it can improve performance of compute-intensive operations on modern multi-core CPUs and GPUs. The operator fusion is a graph-level optimization, and parallelism can be achieved in both graph-level and operator-level.
最后,从头开始训练该模型。 优化器使用简单的梯度下降,损失函数为L2距离。 为提高效率训练过程是异步的。 jittor通过统一计算图和即时分析器计算梯度,并进行计算图级和算子级的优化。
在该示例中,Jittor使用了多个优化,包括:算子融合,激活函数和损失函数可以融合到第一和第二全连接层中; 矩阵乘法中的三元算子也可以融合。 并行化,它可以提高现代多核CPU和GPU上计算密集型运算的性能。 算子融合是一种计算图级优化,而并行化则同时作用于图形级和算子级的优化。
np.random.seed(0)
jt.set_seed(3)
n = 1000
batch_size = 50
base_lr = 0.05
# we need to stop grad of global value to prevent memory leak
lr = jt.float32(base_lr).name("lr").stop_grad()
def get_data(n):
for i in range(n):
x = np.random.rand(batch_size, 1)
y = x*x
yield jt.float32(x), jt.float32(y)
model = Model()
learning_rate = 0.1
optim = nn.SGD (model.parameters(), learning_rate)
for i,(x,y) in enumerate(get_data(n)):
pred_y = model(x)
loss = jt.sqr(pred_y - y)
loss_mean = loss.mean()
optim.step (loss_mean)
print(f"step {i}, loss = {loss_mean.data.sum()}")
assert loss_mean.data < 0.005