-
Notifications
You must be signed in to change notification settings - Fork 7
/
split_train_val.py
53 lines (46 loc) · 1.81 KB
/
split_train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from __future__ import print_function, division
import os
import pandas as pd
from lib.config import cfg
data_dir = cfg.DATA_DIR
# train
train_csv = os.path.join(data_dir, 'train/Annotations/train.csv')
df = pd.read_csv(train_csv)
df['image_id'] = 'train/' + df['image_id']
# warmup
warmup_csv = os.path.join(data_dir, 'train/Annotations/annotations.csv')
df_warmup = pd.read_csv(warmup_csv)
df_warmup['image_id'] = 'train/' + df_warmup['image_id']
# r1-test-a
test_a_csv = os.path.join(data_dir, 'r1-test-a/fashionAI_key_points_test_a_answer_20180426.csv')
df_test_a = pd.read_csv(test_a_csv)
df_test_a['image_id'] = 'r1-test-a/' + df_test_a['image_id']
# r1-test-b
test_b_csv = os.path.join(data_dir, 'r1-test-b/fashionAI_key_points_test_b_answer_20180426.csv')
df_test_b = pd.read_csv(test_b_csv)
df_test_b['image_id'] = 'r1-test-b/' + df_test_b['image_id']
# split train and val
df = pd.concat([df, df_warmup, df_test_a, df_test_b])
df = df.sample(frac=1, random_state=666).reset_index(drop=True)
# test_num = 700
# dfs = [df[df['image_category'] == cate] for cate in cfg.CATEGORY]
# df_train = [df[:-test_num] for df in dfs]
# df_test = [df[-test_num:] for df in dfs]
# df_train = pd.concat(df_train)
# df_test = pd.concat(df_test)
# df_train = df_train.sample(frac=1, random_state=666).reset_index(drop=True)
# df_test = df_test.sample(frac=1, random_state=666).reset_index(drop=True)
train_ratio = 0.95
train_num = int(len(df) * train_ratio)
df_train = df[:train_num]
df_test = df[train_num:]
out = os.path.join(data_dir, 'train.csv')
df_train.to_csv(out, index=False)
out = os.path.join(data_dir, 'val.csv')
df_test.to_csv(out, index=False)
print('train.csv')
print('train num:', len(df_train))
print(df_train['image_category'].value_counts())
print('val.csv')
print('val num:', len(df_test))
print(df_test['image_category'].value_counts())