-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
1019 lines (871 loc) · 40.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Trainer Class
=============
"""
import collections
import json
import logging
import math
import os
import scipy
import torch
import tqdm
import transformers
import textattack
from textattack.shared.utils import logger
from .attack import Attack
from .attack_args import AttackArgs
from .attack_results import MaximizedAttackResult, SuccessfulAttackResult
from .attacker import Attacker
from .model_args import HUGGINGFACE_MODELS
from .models.helpers import LSTMForClassification, WordCNNForClassification
from .models.wrappers import ModelWrapper
from .training_args import CommandLineTrainingArgs, TrainingArgs
class Trainer:
"""Trainer is training and eval loop for adversarial training.
It is designed to work with PyTorch and Transformers models.
Args:
model_wrapper (:class:`~textattack.models.wrappers.ModelWrapper`):
Model wrapper containing both the model and the tokenizer.
task_type (:obj:`str`, `optional`, defaults to :obj:`"classification"`):
The task that the model is trained to perform.
Currently, :class:`~textattack.Trainer` supports two tasks: (1) :obj:`"classification"`, (2) :obj:`"regression"`.
attack (:class:`~textattack.Attack`):
:class:`~textattack.Attack` used to generate adversarial examples for training.
train_dataset (:class:`~textattack.datasets.Dataset`):
Dataset for training.
eval_dataset (:class:`~textattack.datasets.Dataset`):
Dataset for evaluation
training_args (:class:`~textattack.TrainingArgs`):
Arguments for training.
Example::
>>> import textattack
>>> import transformers
>>> model = transformers.AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
>>> tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
>>> # We only use DeepWordBugGao2018 to demonstration purposes.
>>> attack = textattack.attack_recipes.DeepWordBugGao2018.build(model_wrapper)
>>> train_dataset = textattack.datasets.HuggingFaceDataset("imdb", split="train")
>>> eval_dataset = textattack.datasets.HuggingFaceDataset("imdb", split="test")
>>> # Train for 3 epochs with 1 initial clean epochs, 1000 adversarial examples per epoch, learning rate of 5e-5, and effective batch size of 32 (8x4).
>>> training_args = textattack.TrainingArgs(
... num_epochs=3,
... num_clean_epochs=1,
... num_train_adv_examples=1000,
... learning_rate=5e-5,
... per_device_train_batch_size=8,
... gradient_accumulation_steps=4,
... log_to_tb=True,
... )
>>> trainer = textattack.Trainer(
... model_wrapper,
... "classification",
... attack,
... train_dataset,
... eval_dataset,
... training_args
... )
>>> trainer.train()
.. note::
When using :class:`~textattack.Trainer` with `parallel=True` in :class:`~textattack.TrainingArgs`,
make sure to protect the “entry point” of the program by using :obj:`if __name__ == '__main__':`.
If not, each worker process used for generating adversarial examples will execute the training code again.
"""
def __init__(
self,
model_wrapper,
task_type="classification",
attack=None,
train_dataset=None,
eval_dataset=None,
training_args=None,
):
assert isinstance(
model_wrapper, ModelWrapper
), f"`model_wrapper` must be of type `textattack.models.wrappers.ModelWrapper`, but got type `{type(model_wrapper)}`."
# TODO: Support seq2seq training
assert task_type in {
"classification",
"regression",
}, '`task_type` must either be "classification" or "regression"'
if attack:
assert isinstance(
attack, Attack
), f"`attack` argument must be of type `textattack.Attack`, but got type of `{type(attack)}`."
if id(model_wrapper) != id(attack.goal_function.model):
logger.warn(
"`model_wrapper` and the victim model of `attack` are not the same model."
)
if train_dataset:
assert isinstance(
train_dataset, textattack.datasets.Dataset
), f"`train_dataset` must be of type `textattack.datasets.Dataset`, but got type `{type(train_dataset)}`."
if eval_dataset:
assert isinstance(
eval_dataset, textattack.datasets.Dataset
), f"`eval_dataset` must be of type `textattack.datasets.Dataset`, but got type `{type(eval_dataset)}`."
if training_args:
assert isinstance(
training_args, TrainingArgs
), f"`training_args` must be of type `textattack.TrainingArgs`, but got type `{type(training_args)}`."
else:
training_args = TrainingArgs()
if not hasattr(model_wrapper, "model"):
raise ValueError("Cannot detect `model` in `model_wrapper`")
else:
assert isinstance(
model_wrapper.model, torch.nn.Module
), f"`model` in `model_wrapper` must be of type `torch.nn.Module`, but got type `{type(model_wrapper.model)}`."
if not hasattr(model_wrapper, "tokenizer"):
raise ValueError("Cannot detect `tokenizer` in `model_wrapper`")
self.model_wrapper = model_wrapper
self.task_type = task_type
self.attack = attack
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.training_args = training_args
self._metric_name = (
"pearson_correlation" if self.task_type == "regression" else "accuracy"
)
if self.task_type == "regression":
self.loss_fct = torch.nn.MSELoss(reduction="none")
else:
self.loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
self._global_step = 0
def _generate_adversarial_examples(self, epoch):
"""Generate adversarial examples using attacker."""
assert (
self.attack is not None
), "`attack` is `None` but attempting to generate adversarial examples."
base_file_name = f"attack-train-{epoch}"
log_file_name = os.path.join(self.training_args.output_dir, base_file_name)
logger.info("Attacking model to generate new adversarial training set...")
if isinstance(self.training_args.num_train_adv_examples, float):
num_train_adv_examples = math.ceil(
len(self.train_dataset) * self.training_args.num_train_adv_examples
)
else:
num_train_adv_examples = self.training_args.num_train_adv_examples
# Use Different AttackArgs based on num_train_adv_examples value.
# If num_train_adv_examples >= 0 , num_train_adv_examples is
# set as number of successful examples.
# If num_train_adv_examples == -1 , num_examples is set to -1 to
# generate example for all of training data.
if num_train_adv_examples >= 0:
attack_args = AttackArgs(
num_successful_examples=num_train_adv_examples,
num_examples_offset=0,
query_budget=self.training_args.query_budget_train,
shuffle=True,
parallel=self.training_args.parallel,
num_workers_per_device=self.training_args.attack_num_workers_per_device,
disable_stdout=True,
silent=True,
log_to_txt=log_file_name + ".txt",
log_to_csv=log_file_name + ".csv",
)
elif num_train_adv_examples == -1:
# set num_examples when num_train_adv_examples = -1
attack_args = AttackArgs(
num_examples=num_train_adv_examples,
num_examples_offset=0,
query_budget=self.training_args.query_budget_train,
shuffle=True,
parallel=self.training_args.parallel,
num_workers_per_device=self.training_args.attack_num_workers_per_device,
disable_stdout=True,
silent=True,
log_to_txt=log_file_name + ".txt",
log_to_csv=log_file_name + ".csv",
)
else:
assert False, "num_train_adv_examples is negative and not equal to -1."
attacker = Attacker(self.attack, self.train_dataset, attack_args=attack_args)
results = attacker.attack_dataset()
attack_types = collections.Counter(r.__class__.__name__ for r in results)
total_attacks = (
attack_types["SuccessfulAttackResult"] + attack_types["FailedAttackResult"]
)
success_rate = attack_types["SuccessfulAttackResult"] / total_attacks * 100
logger.info(f"Total number of attack results: {len(results)}")
logger.info(
f"Attack success rate: {success_rate:.2f}% [{attack_types['SuccessfulAttackResult']} / {total_attacks}]"
)
# TODO: This will produce a bug if we need to manipulate ground truth output.
# To Fix Issue #498 , We need to add the Non Output columns in one tuple to represent input columns
# Since adversarial_example won't be an input to the model , we will have to remove it from the input
# dictionary in collate_fn
adversarial_examples = [
(
tuple(r.perturbed_result.attacked_text._text_input.values())
+ ("adversarial_example",),
r.perturbed_result.ground_truth_output,
)
for r in results
if isinstance(r, (SuccessfulAttackResult, MaximizedAttackResult))
]
# Name for column indicating if an example is adversarial is set as "_example_type".
adversarial_dataset = textattack.datasets.Dataset(
adversarial_examples,
input_columns=self.train_dataset.input_columns + ("_example_type",),
label_map=self.train_dataset.label_map,
label_names=self.train_dataset.label_names,
output_scale_factor=self.train_dataset.output_scale_factor,
shuffle=False,
)
return adversarial_dataset
def _print_training_args(
self, total_training_steps, train_batch_size, num_clean_epochs
):
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(self.train_dataset)}")
logger.info(f" Num epochs = {self.training_args.num_epochs}")
logger.info(f" Num clean epochs = {num_clean_epochs}")
logger.info(
f" Instantaneous batch size per device = {self.training_args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {train_batch_size * self.training_args.gradient_accumulation_steps}"
)
logger.info(
f" Gradient accumulation steps = {self.training_args.gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {total_training_steps}")
def _save_model_checkpoint(
self, model, tokenizer, step=None, epoch=None, best=False, last=False
):
# Save model checkpoint
if step:
dir_name = f"checkpoint-step-{step}"
if epoch:
dir_name = f"checkpoint-epoch-{epoch}"
if best:
dir_name = "best_model"
if last:
dir_name = "last_model"
output_dir = os.path.join(self.training_args.output_dir, dir_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if isinstance(model, torch.nn.DataParallel):
model = model.module
if isinstance(model, (WordCNNForClassification, LSTMForClassification)):
model.save_pretrained(output_dir)
elif isinstance(model, transformers.PreTrainedModel):
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
else:
state_dict = {k: v.cpu() for k, v in model.state_dict().items()}
torch.save(
state_dict,
os.path.join(output_dir, "pytorch_model.bin"),
)
def _tb_log(self, log, step):
if not hasattr(self, "_tb_writer"):
from torch.utils.tensorboard import SummaryWriter
self._tb_writer = SummaryWriter(self.training_args.tb_log_dir)
self._tb_writer.add_hparams(self.training_args.__dict__, {})
self._tb_writer.flush()
for key in log:
self._tb_writer.add_scalar(key, log[key], step)
def _wandb_log(self, log, step):
if not hasattr(self, "_wandb_init"):
global wandb
import wandb
self._wandb_init = True
wandb.init(
project=self.training_args.wandb_project,
config=self.training_args.__dict__,
)
wandb.log(log, step=step)
def get_optimizer_and_scheduler(self, model, num_training_steps):
"""Returns optimizer and scheduler to use for training. If you are
overriding this method and do not want to use a scheduler, simply
return :obj:`None` for scheduler.
Args:
model (:obj:`torch.nn.Module`):
Model to be trained. Pass its parameters to optimizer for training.
num_training_steps (:obj:`int`):
Number of total training steps.
Returns:
Tuple of optimizer and scheduler :obj:`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler._LRScheduler]`
"""
if isinstance(model, torch.nn.DataParallel):
model = model.module
if isinstance(model, transformers.PreTrainedModel):
# Reference https://huggingface.co/transformers/training.html
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in param_optimizer
if not any(nd in n for nd in no_decay)
],
"weight_decay": self.training_args.weight_decay,
},
{
"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = transformers.optimization.AdamW(
optimizer_grouped_parameters, lr=self.training_args.learning_rate
)
if isinstance(self.training_args.num_warmup_steps, float):
num_warmup_steps = math.ceil(
self.training_args.num_warmup_steps * num_training_steps
)
else:
num_warmup_steps = self.training_args.num_warmup_steps
scheduler = transformers.optimization.get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
else:
optimizer = torch.optim.Adam(
filter(lambda x: x.requires_grad, model.parameters()),
lr=self.training_args.learning_rate,
)
scheduler = None
return optimizer, scheduler
def get_train_dataloader(self, dataset, adv_dataset, batch_size):
"""Returns the :obj:`torch.utils.data.DataLoader` for training.
Args:
dataset (:class:`~textattack.datasets.Dataset`):
Original training dataset.
adv_dataset (:class:`~textattack.datasets.Dataset`):
Adversarial examples generated from the original training dataset. :obj:`None` if no adversarial attack takes place.
batch_size (:obj:`int`):
Batch size for training.
Returns:
:obj:`torch.utils.data.DataLoader`
"""
# TODO: Add pairing option where we can pair original examples with adversarial examples.
# Helper functions for collating data
def collate_fn(data):
input_texts = []
targets = []
is_adv_sample = []
for item in data:
if "_example_type" in item[0].keys():
# Get example type value from OrderedDict and remove it
adv = item[0].pop("_example_type")
# with _example_type removed from item[0] OrderedDict
# all other keys should be part of input
_input, label = item
if adv != "adversarial_example":
raise ValueError(
"`item` has length of 3 but last element is not for marking if the item is an `adversarial example`."
)
else:
is_adv_sample.append(True)
else:
# else `len(item)` is 2.
_input, label = item
is_adv_sample.append(False)
if isinstance(_input, collections.OrderedDict):
_input = tuple(_input.values())
else:
_input = tuple(_input)
if len(_input) == 1:
_input = _input[0]
input_texts.append(_input)
targets.append(label)
return input_texts, torch.tensor(targets), torch.tensor(is_adv_sample)
if adv_dataset:
dataset = torch.utils.data.ConcatDataset([dataset, adv_dataset])
train_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
pin_memory=True,
)
return train_dataloader
def get_eval_dataloader(self, dataset, batch_size):
"""Returns the :obj:`torch.utils.data.DataLoader` for evaluation.
Args:
dataset (:class:`~textattack.datasets.Dataset`):
Dataset to use for evaluation.
batch_size (:obj:`int`):
Batch size for evaluation.
Returns:
:obj:`torch.utils.data.DataLoader`
"""
# Helper functions for collating data
def collate_fn(data):
input_texts = []
targets = []
for _input, label in data:
if isinstance(_input, collections.OrderedDict):
_input = tuple(_input.values())
else:
_input = tuple(_input)
if len(_input) == 1:
_input = _input[0]
input_texts.append(_input)
targets.append(label)
return input_texts, torch.tensor(targets)
eval_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
pin_memory=True,
)
return eval_dataloader
def training_step(self, model, tokenizer, batch):
"""Perform a single training step on a batch of inputs.
Args:
model (:obj:`torch.nn.Module`):
Model to train.
tokenizer:
Tokenizer used to tokenize input text.
batch (:obj:`tuple[list[str], torch.Tensor, torch.Tensor]`):
By default, this will be a tuple of input texts, targets, and boolean tensor indicating if the sample is an adversarial example.
.. note::
If you override the :meth:`get_train_dataloader` method, then shape/type of :obj:`batch` will depend on how you created your batch.
Returns:
:obj:`tuple[torch.Tensor, torch.Tensor, torch.Tensor]` where
- **loss**: :obj:`torch.FloatTensor` of shape 1 containing the loss.
- **preds**: :obj:`torch.FloatTensor` of model's prediction for the batch.
- **targets**: :obj:`torch.Tensor` of model's targets (e.g. labels, target values).
"""
input_texts, targets, is_adv_sample = batch
_targets = targets
targets = targets.to(textattack.shared.utils.device)
if isinstance(model, transformers.PreTrainedModel) or (
isinstance(model, torch.nn.DataParallel)
and isinstance(model.module, transformers.PreTrainedModel)
):
input_ids = tokenizer(
input_texts,
padding="max_length",
return_tensors="pt",
truncation=True,
)
input_ids.to(textattack.shared.utils.device)
logits = model(**input_ids)[0]
else:
input_ids = tokenizer(input_texts)
if not isinstance(input_ids, torch.Tensor):
input_ids = torch.tensor(input_ids)
input_ids = input_ids.to(textattack.shared.utils.device)
logits = model(input_ids)
if self.task_type == "regression":
loss = self.loss_fct(logits.squeeze(), targets.squeeze())
preds = logits
else:
loss = self.loss_fct(logits, targets)
preds = logits.argmax(dim=-1)
sample_weights = torch.ones(
is_adv_sample.size(), device=textattack.shared.utils.device
)
sample_weights[is_adv_sample] *= self.training_args.alpha
loss = loss * sample_weights
loss = torch.mean(loss)
preds = preds.cpu()
return loss, preds, _targets
def evaluate_step(self, model, tokenizer, batch):
"""Perform a single evaluation step on a batch of inputs.
Args:
model (:obj:`torch.nn.Module`):
Model to train.
tokenizer:
Tokenizer used to tokenize input text.
batch (:obj:`tuple[list[str], torch.Tensor]`):
By default, this will be a tuple of input texts and target tensors.
.. note::
If you override the :meth:`get_eval_dataloader` method, then shape/type of :obj:`batch` will depend on how you created your batch.
Returns:
:obj:`tuple[torch.Tensor, torch.Tensor]` where
- **preds**: :obj:`torch.FloatTensor` of model's prediction for the batch.
- **targets**: :obj:`torch.Tensor` of model's targets (e.g. labels, target values).
"""
input_texts, targets = batch
_targets = targets
targets = targets.to(textattack.shared.utils.device)
if isinstance(model, transformers.PreTrainedModel):
input_ids = tokenizer(
input_texts,
padding="max_length",
return_tensors="pt",
truncation=True,
)
input_ids.to(textattack.shared.utils.device)
logits = model(**input_ids)[0]
else:
input_ids = tokenizer(input_texts)
if not isinstance(input_ids, torch.Tensor):
input_ids = torch.tensor(input_ids)
input_ids = input_ids.to(textattack.shared.utils.device)
logits = model(input_ids)
if self.task_type == "regression":
preds = logits
else:
preds = logits.argmax(dim=-1)
return preds.cpu(), _targets
def train(self):
"""Train the model on given training dataset."""
if not self.train_dataset:
raise ValueError("No `train_dataset` available for training.")
textattack.shared.utils.set_seed(self.training_args.random_seed)
if not os.path.exists(self.training_args.output_dir):
os.makedirs(self.training_args.output_dir)
# Save logger writes to file
log_txt_path = os.path.join(self.training_args.output_dir, "train_log.txt")
fh = logging.FileHandler(log_txt_path)
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
logger.info(f"Writing logs to {log_txt_path}.")
# Save original self.training_args to file
args_save_path = os.path.join(
self.training_args.output_dir, "training_args.json"
)
with open(args_save_path, "w", encoding="utf-8") as f:
json.dump(self.training_args.__dict__, f)
logger.info(f"Wrote original training args to {args_save_path}.")
num_gpus = torch.cuda.device_count()
tokenizer = self.model_wrapper.tokenizer
model = self.model_wrapper.model
if self.training_args.parallel and num_gpus > 1:
# TODO: torch.nn.parallel.DistributedDataParallel
# Supposedly faster than DataParallel, but requires more work to setup properly.
model = torch.nn.DataParallel(model)
logger.info(f"Training on {num_gpus} GPUs via `torch.nn.DataParallel`.")
train_batch_size = self.training_args.per_device_train_batch_size * num_gpus
else:
train_batch_size = self.training_args.per_device_train_batch_size
if self.attack is None:
num_clean_epochs = self.training_args.num_epochs
else:
num_clean_epochs = self.training_args.num_clean_epochs
total_clean_training_steps = (
math.ceil(
len(self.train_dataset)
/ (train_batch_size * self.training_args.gradient_accumulation_steps)
)
* num_clean_epochs
)
# calculate total_adv_training_data_length based on type of
# num_train_adv_examples.
# if num_train_adv_examples is float , num_train_adv_examples is a portion of train_dataset.
if isinstance(self.training_args.num_train_adv_examples, float):
total_adv_training_data_length = (
len(self.train_dataset) * self.training_args.num_train_adv_examples
)
# if num_train_adv_examples is int and >=0 then it is taken as value.
elif (
isinstance(self.training_args.num_train_adv_examples, int)
and self.training_args.num_train_adv_examples >= 0
):
total_adv_training_data_length = self.training_args.num_train_adv_examples
# if num_train_adv_examples is = -1 , we generate all possible adv examples.
# Max number of all possible adv examples would be equal to train_dataset.
else:
total_adv_training_data_length = len(self.train_dataset)
# Based on total_adv_training_data_length calculation , find total total_adv_training_steps
total_adv_training_steps = math.ceil(
(len(self.train_dataset) + total_adv_training_data_length)
/ (train_batch_size * self.training_args.gradient_accumulation_steps)
) * (self.training_args.num_epochs - num_clean_epochs)
total_training_steps = total_clean_training_steps + total_adv_training_steps
optimizer, scheduler = self.get_optimizer_and_scheduler(
model, total_training_steps
)
self._print_training_args(
total_training_steps, train_batch_size, num_clean_epochs
)
model.to(textattack.shared.utils.device)
# Variables across epochs
self._total_loss = 0.0
self._current_loss = 0.0
self._last_log_step = 0
# `best_score` is used to keep track of the best model across training.
# Could be loss, accuracy, or other metrics.
best_eval_score = 0.0
best_eval_score_epoch = 0
best_model_path = None
epochs_since_best_eval_score = 0
for epoch in range(1, self.training_args.num_epochs + 1):
logger.info("==========================================================")
logger.info(f"Epoch {epoch}")
if self.attack and epoch > num_clean_epochs:
if (
epoch - num_clean_epochs - 1
) % self.training_args.attack_epoch_interval == 0:
# only generate a new adversarial training set every self.training_args.attack_period epochs after the clean epochs
# adv_dataset is instance of `textattack.datasets.Dataset`
model.eval()
adv_dataset = self._generate_adversarial_examples(epoch)
model.train()
model.to(textattack.shared.utils.device)
else:
adv_dataset = None
else:
logger.info(f"Running clean epoch {epoch}/{num_clean_epochs}")
adv_dataset = None
train_dataloader = self.get_train_dataloader(
self.train_dataset, adv_dataset, train_batch_size
)
model.train()
# Epoch variables
all_preds = []
all_targets = []
prog_bar = tqdm.tqdm(
train_dataloader,
desc="Iteration",
position=0,
leave=True,
dynamic_ncols=True,
)
for step, batch in enumerate(prog_bar):
loss, preds, targets = self.training_step(model, tokenizer, batch)
if isinstance(model, torch.nn.DataParallel):
loss = loss.mean()
loss = loss / self.training_args.gradient_accumulation_steps
loss.backward()
loss = loss.item()
self._total_loss += loss
self._current_loss += loss
all_preds.append(preds)
all_targets.append(targets)
if (step + 1) % self.training_args.gradient_accumulation_steps == 0:
optimizer.step()
if scheduler:
scheduler.step()
optimizer.zero_grad()
self._global_step += 1
if self._global_step > 0:
prog_bar.set_description(
f"Loss {self._total_loss/self._global_step:.5f}"
)
# TODO: Better way to handle TB and Wandb logging
if (self._global_step > 0) and (
self._global_step % self.training_args.logging_interval_step == 0
):
lr_to_log = (
scheduler.get_last_lr()[0]
if scheduler
else self.training_args.learning_rate
)
if self._global_step - self._last_log_step >= 1:
loss_to_log = round(
self._current_loss
/ (self._global_step - self._last_log_step),
4,
)
else:
loss_to_log = round(self._current_loss, 4)
log = {"train/loss": loss_to_log, "train/learning_rate": lr_to_log}
if self.training_args.log_to_tb:
self._tb_log(log, self._global_step)
if self.training_args.log_to_wandb:
self._wandb_log(log, self._global_step)
self._current_loss = 0.0
self._last_log_step = self._global_step
# Save model checkpoint to file.
if self.training_args.checkpoint_interval_steps:
if (
self._global_step > 0
and (
self._global_step
% self.training_args.checkpoint_interval_steps
)
== 0
):
self._save_model_checkpoint(
model, tokenizer, step=self._global_step
)
preds = torch.cat(all_preds)
targets = torch.cat(all_targets)
if self._metric_name == "accuracy":
correct_predictions = (preds == targets).sum().item()
accuracy = correct_predictions / len(targets)
metric_log = {"train/train_accuracy": accuracy}
logger.info(f"Train accuracy: {accuracy*100:.2f}%")
else:
pearson_correlation, pearson_pvalue = scipy.stats.pearsonr(
preds, targets
)
metric_log = {
"train/pearson_correlation": pearson_correlation,
"train/pearson_pvalue": pearson_pvalue,
}
logger.info(f"Train Pearson correlation: {pearson_correlation:.4f}%")
if len(targets) > 0:
if self.training_args.log_to_tb:
self._tb_log(metric_log, epoch)
if self.training_args.log_to_wandb:
metric_log["epoch"] = epoch
self._wandb_log(metric_log, self._global_step)
# Evaluate after each epoch.
eval_score = self.evaluate()
if self.training_args.log_to_tb:
self._tb_log({f"eval/{self._metric_name}": eval_score}, epoch)
if self.training_args.log_to_wandb:
self._wandb_log(
{f"eval/{self._metric_name}": eval_score, "epoch": epoch},
self._global_step,
)
if (
self.training_args.checkpoint_interval_epochs
and (epoch % self.training_args.checkpoint_interval_epochs) == 0
):
self._save_model_checkpoint(model, tokenizer, epoch=epoch)
if eval_score > best_eval_score:
best_eval_score = eval_score
best_eval_score_epoch = epoch
epochs_since_best_eval_score = 0
self._save_model_checkpoint(model, tokenizer, best=True)
logger.info(
f"Best score found. Saved model to {self.training_args.output_dir}/best_model/"
)
else:
epochs_since_best_eval_score += 1
if self.training_args.early_stopping_epochs and (
epochs_since_best_eval_score
> self.training_args.early_stopping_epochs
):
logger.info(
f"Stopping early since it's been {self.training_args.early_stopping_epochs} steps since validation score increased."
)
break
if self.training_args.log_to_tb:
self._tb_writer.flush()
# Finish training
if isinstance(model, torch.nn.DataParallel):
model = model.module
if self.training_args.load_best_model_at_end:
best_model_path = os.path.join(self.training_args.output_dir, "best_model")
if hasattr(model, "from_pretrained"):
model = model.__class__.from_pretrained(best_model_path)
else:
model = model.load_state_dict(
torch.load(os.path.join(best_model_path, "pytorch_model.bin"))
)
if self.training_args.save_last:
self._save_model_checkpoint(model, tokenizer, last=True)
self.model_wrapper.model = model
self._write_readme(best_eval_score, best_eval_score_epoch, train_batch_size)
def evaluate(self):
"""Evaluate the model on given evaluation dataset."""
if not self.eval_dataset:
raise ValueError("No `eval_dataset` available for training.")
logging.info("Evaluating model on evaluation dataset.")
model = self.model_wrapper.model
tokenizer = self.model_wrapper.tokenizer
model.eval()
all_preds = []
all_targets = []
if isinstance(model, torch.nn.DataParallel):
num_gpus = torch.cuda.device_count()
eval_batch_size = self.training_args.per_device_eval_batch_size * num_gpus
else:
eval_batch_size = self.training_args.per_device_eval_batch_size
eval_dataloader = self.get_eval_dataloader(self.eval_dataset, eval_batch_size)
with torch.no_grad():
for step, batch in enumerate(eval_dataloader):
preds, targets = self.evaluate_step(model, tokenizer, batch)
all_preds.append(preds)
all_targets.append(targets)
preds = torch.cat(all_preds)
targets = torch.cat(all_targets)
if self.task_type == "regression":
pearson_correlation, pearson_p_value = scipy.stats.pearsonr(preds, targets)
eval_score = pearson_correlation
else:
correct_predictions = (preds == targets).sum().item()
accuracy = correct_predictions / len(targets)
eval_score = accuracy
if self._metric_name == "accuracy":
logger.info(f"Eval {self._metric_name}: {eval_score*100:.2f}%")
else:
logger.info(f"Eval {self._metric_name}: {eval_score:.4f}%")
return eval_score
def _write_readme(self, best_eval_score, best_eval_score_epoch, train_batch_size):
if isinstance(self.training_args, CommandLineTrainingArgs):
model_name = self.training_args.model_name_or_path
elif isinstance(self.model_wrapper.model, transformers.PreTrainedModel):
if (
hasattr(self.model_wrapper.model.config, "_name_or_path")
and self.model_wrapper.model.config._name_or_path in HUGGINGFACE_MODELS
):
# TODO Better way than just checking HUGGINGFACE_MODELS ?
model_name = self.model_wrapper.model.config._name_or_path
elif hasattr(self.model_wrapper.model.config, "model_type"):
model_name = self.model_wrapper.model.config.model_type
else:
model_name = ""
else:
model_name = ""
if model_name:
model_name = f"`{model_name}`"
if (
isinstance(self.training_args, CommandLineTrainingArgs)
and self.training_args.model_max_length
):
model_max_length = self.training_args.model_max_length
elif isinstance(
self.model_wrapper.model,
(
transformers.PreTrainedModel,
LSTMForClassification,
WordCNNForClassification,
),
):
model_max_length = self.model_wrapper.tokenizer.model_max_length
else:
model_max_length = None
if model_max_length:
model_max_length_str = f" a maximum sequence length of {model_max_length},"
else:
model_max_length_str = ""
if isinstance(
self.train_dataset, textattack.datasets.HuggingFaceDataset
) and hasattr(self.train_dataset, "_name"):
dataset_name = self.train_dataset._name
if hasattr(self.train_dataset, "_subset"):
dataset_name += f" ({self.train_dataset._subset})"
elif isinstance(
self.eval_dataset, textattack.datasets.HuggingFaceDataset
) and hasattr(self.eval_dataset, "_name"):
dataset_name = self.eval_dataset._name
if hasattr(self.eval_dataset, "_subset"):
dataset_name += f" ({self.eval_dataset._subset})"
else:
dataset_name = None
if dataset_name:
dataset_str = (
"and the `{dataset_name}` dataset loaded using the `datasets` library"
)
else:
dataset_str = ""
loss_func = (
"mean squared error" if self.task_type == "regression" else "cross-entropy"
)
metric_name = (
"pearson correlation" if self.task_type == "regression" else "accuracy"
)
epoch_info = f"{best_eval_score_epoch} epoch" + (
"s" if best_eval_score_epoch > 1 else ""