-
Notifications
You must be signed in to change notification settings - Fork 0
/
attacker.py
597 lines (514 loc) · 22.7 KB
/
attacker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
"""
Attacker Class
==============
"""
import collections
import logging
import multiprocessing as mp
import os
import queue
import random
import traceback
import torch
import tqdm
import textattack
from textattack.attack_results import (
FailedAttackResult,
MaximizedAttackResult,
SkippedAttackResult,
SuccessfulAttackResult,
)
from textattack.shared.utils import logger
from .attack import Attack
from .attack_args import AttackArgs
class Attacker:
"""Class for running attacks on a dataset with specified parameters. This
class uses the :class:`~textattack.Attack` to actually run the attacks,
while also providing useful features such as parallel processing,
saving/resuming from a checkpint, logging to files and stdout.
Args:
attack (:class:`~textattack.Attack`):
:class:`~textattack.Attack` used to actually carry out the attack.
dataset (:class:`~textattack.datasets.Dataset`):
Dataset to attack.
attack_args (:class:`~textattack.AttackArgs`):
Arguments for attacking the dataset. For default settings, look at the `AttackArgs` class.
Example::
>>> import textattack
>>> import transformers
>>> model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb")
>>> tokenizer = transformers.AutoTokenizer.from_pretrained("textattack/bert-base-uncased-imdb")
>>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
>>> attack = textattack.attack_recipes.TextFoolerJin2019.build(model_wrapper)
>>> dataset = textattack.datasets.HuggingFaceDataset("imdb", split="test")
>>> # Attack 20 samples with CSV logging and checkpoint saved every 5 interval
>>> attack_args = textattack.AttackArgs(
... num_examples=20,
... log_to_csv="log.csv",
... checkpoint_interval=5,
... checkpoint_dir="checkpoints",
... disable_stdout=True
... )
>>> attacker = textattack.Attacker(attack, dataset, attack_args)
>>> attacker.attack_dataset()
"""
def __init__(self, attack, dataset, attack_args=None):
assert isinstance(
attack, Attack
), f"`attack` argument must be of type `textattack.Attack`, but got type of `{type(attack)}`."
assert isinstance(
dataset, textattack.datasets.Dataset
), f"`dataset` must be of type `textattack.datasets.Dataset`, but got type `{type(dataset)}`."
if attack_args:
assert isinstance(
attack_args, AttackArgs
), f"`attack_args` must be of type `textattack.AttackArgs`, but got type `{type(attack_args)}`."
else:
attack_args = AttackArgs()
self.attack = attack
self.dataset = dataset
self.attack_args = attack_args
self.attack_log_manager = None
# This is to be set if loading from a checkpoint
self._checkpoint = None
def _get_worklist(self, start, end, num_examples, shuffle):
if end - start < num_examples:
logger.warn(
f"Attempting to attack {num_examples} samples when only {end-start} are available."
)
candidates = list(range(start, end))
if shuffle:
random.shuffle(candidates)
worklist = collections.deque(candidates[:num_examples])
candidates = collections.deque(candidates[num_examples:])
assert (len(worklist) + len(candidates)) == (end - start)
return worklist, candidates
def _attack(self):
"""Internal method that carries out attack.
No parallel processing is involved.
"""
if torch.cuda.is_available():
self.attack.cuda_()
if self._checkpoint:
num_remaining_attacks = self._checkpoint.num_remaining_attacks
worklist = self._checkpoint.worklist
worklist_candidates = self._checkpoint.worklist_candidates
logger.info(
f"Recovered from checkpoint previously saved at {self._checkpoint.datetime}."
)
else:
if self.attack_args.num_successful_examples:
num_remaining_attacks = self.attack_args.num_successful_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_successful_examples,
self.attack_args.shuffle,
)
else:
num_remaining_attacks = self.attack_args.num_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_examples,
self.attack_args.shuffle,
)
if not self.attack_args.silent:
print(self.attack, "\n")
pbar = tqdm.tqdm(total=num_remaining_attacks, smoothing=0, dynamic_ncols=True)
if self._checkpoint:
num_results = self._checkpoint.results_count
num_failures = self._checkpoint.num_failed_attacks
num_skipped = self._checkpoint.num_skipped_attacks
num_successes = self._checkpoint.num_successful_attacks
else:
num_results = 0
num_failures = 0
num_skipped = 0
num_successes = 0
sample_exhaustion_warned = False
while worklist:
idx = worklist.popleft()
try:
example, ground_truth_output = self.dataset[idx]
except IndexError:
continue
example = textattack.shared.AttackedText(example)
if self.dataset.label_names is not None:
example.attack_attrs["label_names"] = self.dataset.label_names
try:
result = self.attack.attack(example, ground_truth_output)
except Exception as e:
raise e
if (
isinstance(result, SkippedAttackResult) and self.attack_args.attack_n
) or (
not isinstance(result, SuccessfulAttackResult)
and self.attack_args.num_successful_examples
):
if worklist_candidates:
next_sample = worklist_candidates.popleft()
worklist.append(next_sample)
else:
if not sample_exhaustion_warned:
logger.warn("Ran out of samples to attack!")
sample_exhaustion_warned = True
else:
pbar.update(1)
self.attack_log_manager.log_result(result)
if not self.attack_args.disable_stdout and not self.attack_args.silent:
print("\n")
num_results += 1
if isinstance(result, SkippedAttackResult):
num_skipped += 1
if isinstance(result, (SuccessfulAttackResult, MaximizedAttackResult)):
num_successes += 1
if isinstance(result, FailedAttackResult):
num_failures += 1
pbar.set_description(
f"[Succeeded / Failed / Skipped / Total] {num_successes} / {num_failures} / {num_skipped} / {num_results}"
)
if (
self.attack_args.checkpoint_interval
and len(self.attack_log_manager.results)
% self.attack_args.checkpoint_interval
== 0
):
new_checkpoint = textattack.shared.AttackCheckpoint(
self.attack_args,
self.attack_log_manager,
worklist,
worklist_candidates,
)
new_checkpoint.save()
self.attack_log_manager.flush()
pbar.close()
print()
# Enable summary stdout
if not self.attack_args.silent and self.attack_args.disable_stdout:
self.attack_log_manager.enable_stdout()
if self.attack_args.enable_advance_metrics:
self.attack_log_manager.enable_advance_metrics = True
self.attack_log_manager.log_summary()
self.attack_log_manager.flush()
print()
def _attack_parallel(self):
pytorch_multiprocessing_workaround()
if self._checkpoint:
num_remaining_attacks = self._checkpoint.num_remaining_attacks
worklist = self._checkpoint.worklist
worklist_candidates = self._checkpoint.worklist_candidates
logger.info(
f"Recovered from checkpoint previously saved at {self._checkpoint.datetime}."
)
else:
if self.attack_args.num_successful_examples:
num_remaining_attacks = self.attack_args.num_successful_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_successful_examples,
self.attack_args.shuffle,
)
else:
num_remaining_attacks = self.attack_args.num_examples
# We make `worklist` deque (linked-list) for easy pop and append.
# Candidates are other samples we can attack if we need more samples.
worklist, worklist_candidates = self._get_worklist(
self.attack_args.num_examples_offset,
len(self.dataset),
self.attack_args.num_examples,
self.attack_args.shuffle,
)
in_queue = torch.multiprocessing.Queue()
out_queue = torch.multiprocessing.Queue()
for i in worklist:
try:
example, ground_truth_output = self.dataset[i]
example = textattack.shared.AttackedText(example)
if self.dataset.label_names is not None:
example.attack_attrs["label_names"] = self.dataset.label_names
in_queue.put((i, example, ground_truth_output))
except IndexError:
raise IndexError(
f"Tried to access element at {i} in dataset of size {len(self.dataset)}."
)
# We reserve the first GPU for coordinating workers.
num_gpus = torch.cuda.device_count()
num_workers = self.attack_args.num_workers_per_device * num_gpus
logger.info(f"Running {num_workers} worker(s) on {num_gpus} GPU(s).")
# Lock for synchronization
lock = mp.Lock()
# We move Attacker (and its components) to CPU b/c we don't want models using wrong GPU in worker processes.
self.attack.cpu_()
torch.cuda.empty_cache()
# Start workers.
worker_pool = torch.multiprocessing.Pool(
num_workers,
attack_from_queue,
(
self.attack,
self.attack_args,
num_gpus,
mp.Value("i", 1, lock=False),
lock,
in_queue,
out_queue,
),
)
# Log results asynchronously and update progress bar.
if self._checkpoint:
num_results = self._checkpoint.results_count
num_failures = self._checkpoint.num_failed_attacks
num_skipped = self._checkpoint.num_skipped_attacks
num_successes = self._checkpoint.num_successful_attacks
else:
num_results = 0
num_failures = 0
num_skipped = 0
num_successes = 0
logger.info(f"Worklist size: {len(worklist)}")
logger.info(f"Worklist candidate size: {len(worklist_candidates)}")
sample_exhaustion_warned = False
pbar = tqdm.tqdm(total=num_remaining_attacks, smoothing=0, dynamic_ncols=True)
while worklist:
idx, result = out_queue.get(block=True)
worklist.remove(idx)
if isinstance(result, tuple) and isinstance(result[0], Exception):
logger.error(
f'Exception encountered for input "{self.dataset[idx][0]}".'
)
error_trace = result[1]
logger.error(error_trace)
in_queue.close()
in_queue.join_thread()
out_queue.close()
out_queue.join_thread()
worker_pool.terminate()
worker_pool.join()
return
elif (
isinstance(result, SkippedAttackResult) and self.attack_args.attack_n
) or (
not isinstance(result, SuccessfulAttackResult)
and self.attack_args.num_successful_examples
):
if worklist_candidates:
next_sample = worklist_candidates.popleft()
example, ground_truth_output = self.dataset[next_sample]
example = textattack.shared.AttackedText(example)
if self.dataset.label_names is not None:
example.attack_attrs["label_names"] = self.dataset.label_names
worklist.append(next_sample)
in_queue.put((next_sample, example, ground_truth_output))
else:
if not sample_exhaustion_warned:
logger.warn("Ran out of samples to attack!")
sample_exhaustion_warned = True
else:
pbar.update()
self.attack_log_manager.log_result(result)
num_results += 1
if isinstance(result, SkippedAttackResult):
num_skipped += 1
if isinstance(result, (SuccessfulAttackResult, MaximizedAttackResult)):
num_successes += 1
if isinstance(result, FailedAttackResult):
num_failures += 1
pbar.set_description(
f"[Succeeded / Failed / Skipped / Total] {num_successes} / {num_failures} / {num_skipped} / {num_results}"
)
if (
self.attack_args.checkpoint_interval
and len(self.attack_log_manager.results)
% self.attack_args.checkpoint_interval
== 0
):
new_checkpoint = textattack.shared.AttackCheckpoint(
self.attack_args,
self.attack_log_manager,
worklist,
worklist_candidates,
)
new_checkpoint.save()
self.attack_log_manager.flush()
# Send sentinel values to worker processes
for _ in range(num_workers):
in_queue.put(("END", "END", "END"))
worker_pool.close()
worker_pool.join()
pbar.close()
print()
# Enable summary stdout.
if not self.attack_args.silent and self.attack_args.disable_stdout:
self.attack_log_manager.enable_stdout()
if self.attack_args.enable_advance_metrics:
self.attack_log_manager.enable_advance_metrics = True
self.attack_log_manager.log_summary()
self.attack_log_manager.flush()
print()
def attack_dataset(self):
"""Attack the dataset.
Returns:
:obj:`list[AttackResult]` - List of :class:`~textattack.attack_results.AttackResult` obtained after attacking the given dataset..
"""
if self.attack_args.silent:
logger.setLevel(logging.ERROR)
if self.attack_args.query_budget:
self.attack.goal_function.query_budget = self.attack_args.query_budget
if not self.attack_log_manager:
self.attack_log_manager = AttackArgs.create_loggers_from_args(
self.attack_args
)
textattack.shared.utils.set_seed(self.attack_args.random_seed)
if self.dataset.shuffled and self.attack_args.checkpoint_interval:
# Not allowed b/c we cannot recover order of shuffled data
raise ValueError(
"Cannot use `--checkpoint-interval` with dataset that has been internally shuffled."
)
self.attack_args.num_examples = (
len(self.dataset)
if self.attack_args.num_examples == -1
else self.attack_args.num_examples
)
if self.attack_args.parallel:
if torch.cuda.device_count() == 0:
raise Exception(
"Found no GPU on your system. To run attacks in parallel, GPU is required."
)
self._attack_parallel()
else:
self._attack()
if self.attack_args.silent:
logger.setLevel(logging.INFO)
return self.attack_log_manager.results
def update_attack_args(self, **kwargs):
"""To update any attack args, pass the new argument as keyword argument
to this function.
Examples::
>>> attacker = #some instance of Attacker
>>> # To switch to parallel mode and increase checkpoint interval from 100 to 500
>>> attacker.update_attack_args(parallel=True, checkpoint_interval=500)
"""
for k in kwargs:
if hasattr(self.attack_args, k):
self.attack_args.k = kwargs[k]
else:
raise ValueError(f"`textattack.AttackArgs` does not have field {k}.")
@classmethod
def from_checkpoint(cls, attack, dataset, checkpoint):
"""Resume attacking from a saved checkpoint. Attacker and dataset must
be recovered by the user again, while attack args are loaded from the
saved checkpoint.
Args:
attack (:class:`~textattack.Attack`):
Attack object for carrying out the attack.
dataset (:class:`~textattack.datasets.Dataset`):
Dataset to attack.
checkpoint (:obj:`Union[str, :class:`~textattack.shared.AttackChecpoint`]`):
Path of saved checkpoint or the actual saved checkpoint.
"""
assert isinstance(
checkpoint, (str, textattack.shared.AttackCheckpoint)
), f"`checkpoint` must be of type `str` or `textattack.shared.AttackCheckpoint`, but got type `{type(checkpoint)}`."
if isinstance(checkpoint, str):
checkpoint = textattack.shared.AttackCheckpoint.load(checkpoint)
attacker = cls(attack, dataset, checkpoint.attack_args)
attacker.attack_log_manager = checkpoint.attack_log_manager
attacker._checkpoint = checkpoint
return attacker
@staticmethod
def attack_interactive(attack):
print(attack, "\n")
print("Running in interactive mode")
print("----------------------------")
while True:
print('Enter a sentence to attack or "q" to quit:')
text = input()
if text == "q":
break
if not text:
continue
print("Attacking...")
example = textattack.shared.attacked_text.AttackedText(text)
output = attack.goal_function.get_output(example)
result = attack.attack(example, output)
print(result.__str__(color_method="ansi") + "\n")
#
# Helper Methods for multiprocess attacks
#
def pytorch_multiprocessing_workaround():
# This is a fix for a known bug
try:
torch.multiprocessing.set_start_method("spawn", force=True)
torch.multiprocessing.set_sharing_strategy("file_system")
except RuntimeError:
pass
def set_env_variables(gpu_id):
# Disable tensorflow logs, except in the case of an error.
if "TF_CPP_MIN_LOG_LEVEL" not in os.environ:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Set sharing strategy to file_system to avoid file descriptor leaks
torch.multiprocessing.set_sharing_strategy("file_system")
# Only use one GPU, if we have one.
# For Tensorflow
# TODO: Using USE with `--parallel` raises similar issue as https://github.com/tensorflow/tensorflow/issues/38518#
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
# For PyTorch
torch.cuda.set_device(gpu_id)
# Fix TensorFlow GPU memory growth
try:
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
gpu = gpus[gpu_id]
tf.config.experimental.set_visible_devices(gpu, "GPU")
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
except ModuleNotFoundError:
pass
def attack_from_queue(
attack, attack_args, num_gpus, first_to_start, lock, in_queue, out_queue
):
assert isinstance(
attack, Attack
), f"`attack` must be of type `Attack`, but got type `{type(attack)}`."
gpu_id = (torch.multiprocessing.current_process()._identity[0] - 1) % num_gpus
set_env_variables(gpu_id)
textattack.shared.utils.set_seed(attack_args.random_seed)
if torch.multiprocessing.current_process()._identity[0] > 1:
logging.disable()
attack.cuda_()
# Simple non-synchronized check to see if it's the first process to reach this point.
# This let us avoid waiting for lock.
if bool(first_to_start.value):
# If it's first process to reach this step, we first try to acquire the lock to update the value.
with lock:
# Because another process could have changed `first_to_start=False` while we wait, we check again.
if bool(first_to_start.value):
first_to_start.value = 0
if not attack_args.silent:
print(attack, "\n")
while True:
try:
i, example, ground_truth_output = in_queue.get(timeout=5)
if i == "END" and example == "END" and ground_truth_output == "END":
# End process when sentinel value is received
break
else:
result = attack.attack(example, ground_truth_output)
out_queue.put((i, result))
except Exception as e:
if isinstance(e, queue.Empty):
continue
else:
out_queue.put((i, (e, traceback.format_exc())))