-
Notifications
You must be signed in to change notification settings - Fork 0
/
attack_args.py
764 lines (703 loc) · 34.4 KB
/
attack_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
"""
AttackArgs Class
================
"""
from dataclasses import dataclass, field
import json
import os
import sys
import time
from typing import Dict, Optional
import textattack
from textattack.shared.utils import ARGS_SPLIT_TOKEN, load_module_from_file
from .attack import Attack
from .dataset_args import DatasetArgs
from .model_args import ModelArgs
ATTACK_RECIPE_NAMES = {
"alzantot": "textattack.attack_recipes.GeneticAlgorithmAlzantot2018",
"bae": "textattack.attack_recipes.BAEGarg2019",
"bert-attack": "textattack.attack_recipes.BERTAttackLi2020",
"faster-alzantot": "textattack.attack_recipes.FasterGeneticAlgorithmJia2019",
"deepwordbug": "textattack.attack_recipes.DeepWordBugGao2018",
"hotflip": "textattack.attack_recipes.HotFlipEbrahimi2017",
"input-reduction": "textattack.attack_recipes.InputReductionFeng2018",
"kuleshov": "textattack.attack_recipes.Kuleshov2017",
"morpheus": "textattack.attack_recipes.MorpheusTan2020",
"seq2sick": "textattack.attack_recipes.Seq2SickCheng2018BlackBox",
"textbugger": "textattack.attack_recipes.TextBuggerLi2018",
"textfooler": "textattack.attack_recipes.TextFoolerJin2019",
"pwws": "textattack.attack_recipes.PWWSRen2019",
"iga": "textattack.attack_recipes.IGAWang2019",
"pruthi": "textattack.attack_recipes.Pruthi2019",
"pso": "textattack.attack_recipes.PSOZang2020",
"checklist": "textattack.attack_recipes.CheckList2020",
"clare": "textattack.attack_recipes.CLARE2020",
"a2t": "textattack.attack_recipes.A2TYoo2021",
}
BLACK_BOX_TRANSFORMATION_CLASS_NAMES = {
"random-synonym-insertion": "textattack.transformations.RandomSynonymInsertion",
"word-deletion": "textattack.transformations.WordDeletion",
"word-swap-embedding": "textattack.transformations.WordSwapEmbedding",
"word-swap-homoglyph": "textattack.transformations.WordSwapHomoglyphSwap",
"word-swap-inflections": "textattack.transformations.WordSwapInflections",
"word-swap-neighboring-char-swap": "textattack.transformations.WordSwapNeighboringCharacterSwap",
"word-swap-random-char-deletion": "textattack.transformations.WordSwapRandomCharacterDeletion",
"word-swap-random-char-insertion": "textattack.transformations.WordSwapRandomCharacterInsertion",
"word-swap-random-char-substitution": "textattack.transformations.WordSwapRandomCharacterSubstitution",
"word-swap-wordnet": "textattack.transformations.WordSwapWordNet",
"word-swap-masked-lm": "textattack.transformations.WordSwapMaskedLM",
"word-swap-hownet": "textattack.transformations.WordSwapHowNet",
"word-swap-qwerty": "textattack.transformations.WordSwapQWERTY",
}
WHITE_BOX_TRANSFORMATION_CLASS_NAMES = {
"word-swap-gradient": "textattack.transformations.WordSwapGradientBased"
}
CONSTRAINT_CLASS_NAMES = {
#
# Semantics constraints
#
"embedding": "textattack.constraints.semantics.WordEmbeddingDistance",
"sbert": "textattack.constraints.semantics.sentence_encoders.SBERT",
"infer-sent": "textattack.constraints.semantics.sentence_encoders.InferSent",
"thought-vector": "textattack.constraints.semantics.sentence_encoders.ThoughtVector",
"use": "textattack.constraints.semantics.sentence_encoders.UniversalSentenceEncoder",
"muse": "textattack.constraints.semantics.sentence_encoders.MultilingualUniversalSentenceEncoder",
"bert-score": "textattack.constraints.semantics.BERTScore",
#
# Grammaticality constraints
#
"lang-tool": "textattack.constraints.grammaticality.LanguageTool",
"part-of-speech": "textattack.constraints.grammaticality.PartOfSpeech",
"goog-lm": "textattack.constraints.grammaticality.language_models.GoogleLanguageModel",
"gpt2": "textattack.constraints.grammaticality.language_models.GPT2",
"learning-to-write": "textattack.constraints.grammaticality.language_models.LearningToWriteLanguageModel",
"cola": "textattack.constraints.grammaticality.COLA",
#
# Overlap constraints
#
"bleu": "textattack.constraints.overlap.BLEU",
"chrf": "textattack.constraints.overlap.chrF",
"edit-distance": "textattack.constraints.overlap.LevenshteinEditDistance",
"meteor": "textattack.constraints.overlap.METEOR",
"max-words-perturbed": "textattack.constraints.overlap.MaxWordsPerturbed",
#
# Pre-transformation constraints
#
"repeat": "textattack.constraints.pre_transformation.RepeatModification",
"stopword": "textattack.constraints.pre_transformation.StopwordModification",
"max-word-index": "textattack.constraints.pre_transformation.MaxWordIndexModification",
}
SEARCH_METHOD_CLASS_NAMES = {
"beam-search": "textattack.search_methods.BeamSearch",
"greedy": "textattack.search_methods.GreedySearch",
"ga-word": "textattack.search_methods.GeneticAlgorithm",
"greedy-word-wir": "textattack.search_methods.GreedyWordSwapWIR",
"pso": "textattack.search_methods.ParticleSwarmOptimization",
}
GOAL_FUNCTION_CLASS_NAMES = {
#
# Classification goal functions
#
"hardlabel-classification": "textattack.goal_functions.classification.HardLabelClassification",
"targeted-classification": "textattack.goal_functions.classification.TargetedClassification",
"untargeted-classification": "textattack.goal_functions.classification.UntargetedClassification",
"input-reduction": "textattack.goal_functions.classification.InputReduction",
#
# Text goal functions
#
"minimize-bleu": "textattack.goal_functions.text.MinimizeBleu",
"non-overlapping-output": "textattack.goal_functions.text.NonOverlappingOutput",
"text-to-text": "textattack.goal_functions.text.TextToTextGoalFunction",
}
@dataclass
class AttackArgs:
"""Attack arguments to be passed to :class:`~textattack.Attacker`.
Args:
num_examples (:obj:`int`, 'optional`, defaults to :obj:`10`):
The number of examples to attack. :obj:`-1` for entire dataset.
num_successful_examples (:obj:`int`, `optional`, defaults to :obj:`None`):
The number of successful adversarial examples we want. This is different from :obj:`num_examples`
as :obj:`num_examples` only cares about attacking `N` samples while :obj:`num_successful_examples` aims to keep attacking
until we have `N` successful cases.
.. note::
If set, this argument overrides `num_examples` argument.
num_examples_offset (:obj: `int`, `optional`, defaults to :obj:`0`):
The offset index to start at in the dataset.
attack_n (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run attack until total of `N` examples have been attacked (and not skipped).
shuffle (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, we randomly shuffle the dataset before attacking. However, this avoids actually shuffling
the dataset internally and opts for shuffling the list of indices of examples we want to attack. This means
:obj:`shuffle` can now be used with checkpoint saving.
query_budget (:obj:`int`, `optional`, defaults to :obj:`None`):
The maximum number of model queries allowed per example attacked.
If not set, we use the query budget set in the :class:`~textattack.goal_functions.GoalFunction` object (which by default is :obj:`float("inf")`).
.. note::
Setting this overwrites the query budget set in :class:`~textattack.goal_functions.GoalFunction` object.
checkpoint_interval (:obj:`int`, `optional`, defaults to :obj:`None`):
If set, checkpoint will be saved after attacking every `N` examples. If :obj:`None` is passed, no checkpoints will be saved.
checkpoint_dir (:obj:`str`, `optional`, defaults to :obj:`"checkpoints"`):
The directory to save checkpoint files.
random_seed (:obj:`int`, `optional`, defaults to :obj:`765`):
Random seed for reproducibility.
parallel (:obj:`False`, `optional`, defaults to :obj:`False`):
If :obj:`True`, run attack using multiple CPUs/GPUs.
num_workers_per_device (:obj:`int`, `optional`, defaults to :obj:`1`):
Number of worker processes to run per device in parallel mode (i.e. :obj:`parallel=True`). For example, if you are using GPUs and :obj:`num_workers_per_device=2`,
then 2 processes will be running in each GPU.
log_to_txt (:obj:`str`, `optional`, defaults to :obj:`None`):
If set, save attack logs as a `.txt` file to the directory specified by this argument.
If the last part of the provided path ends with `.txt` extension, it is assumed to the desired path of the log file.
log_to_csv (:obj:`str`, `optional`, defaults to :obj:`None`):
If set, save attack logs as a CSV file to the directory specified by this argument.
If the last part of the provided path ends with `.csv` extension, it is assumed to the desired path of the log file.
csv_coloring_style (:obj:`str`, `optional`, defaults to :obj:`"file"`):
Method for choosing how to mark perturbed parts of the text. Options are :obj:`"file"`, :obj:`"plain"`, and :obj:`"html"`.
:obj:`"file"` wraps perturbed parts with double brackets :obj:`[[ <text> ]]` while :obj:`"plain"` does not mark the text in any way.
log_to_visdom (:obj:`dict`, `optional`, defaults to :obj:`None`):
If set, Visdom logger is used with the provided dictionary passed as a keyword arguments to :class:`~textattack.loggers.VisdomLogger`.
Pass in empty dictionary to use default arguments. For custom logger, the dictionary should have the following
three keys and their corresponding values: :obj:`"env", "port", "hostname"`.
log_to_wandb(:obj:`dict`, `optional`, defaults to :obj:`None`):
If set, WandB logger is used with the provided dictionary passed as a keyword arguments to :class:`~textattack.loggers.WeightsAndBiasesLogger`.
Pass in empty dictionary to use default arguments. For custom logger, the dictionary should have the following
key and its corresponding value: :obj:`"project"`.
disable_stdout (:obj:`bool`, `optional`, defaults to :obj:`False`):
Disable displaying individual attack results to stdout.
silent (:obj:`bool`, `optional`, defaults to :obj:`False`):
Disable all logging (except for errors). This is stronger than :obj:`disable_stdout`.
enable_advance_metrics (:obj:`bool`, `optional`, defaults to :obj:`False`):
Enable calculation and display of optional advance post-hoc metrics like perplexity, grammar errors, etc.
"""
num_examples: int = 10
num_successful_examples: int = None
num_examples_offset: int = 0
attack_n: bool = False
shuffle: bool = False
query_budget: int = None
checkpoint_interval: int = None
checkpoint_dir: str = "checkpoints"
random_seed: int = 765 # equivalent to sum((ord(c) for c in "TEXTATTACK"))
parallel: bool = False
num_workers_per_device: int = 1
log_to_txt: str = None
log_to_csv: str = None
log_summary_to_json: str = None
csv_coloring_style: str = "file"
log_to_visdom: dict = None
log_to_wandb: dict = None
disable_stdout: bool = False
silent: bool = False
enable_advance_metrics: bool = False
metrics: Optional[Dict] = None
def __post_init__(self):
if self.num_successful_examples:
self.num_examples = None
if self.num_examples:
assert (
self.num_examples >= 0 or self.num_examples == -1
), "`num_examples` must be greater than or equal to 0 or equal to -1."
if self.num_successful_examples:
assert (
self.num_successful_examples >= 0
), "`num_examples` must be greater than or equal to 0."
if self.query_budget:
assert self.query_budget > 0, "`query_budget` must be greater than 0."
if self.checkpoint_interval:
assert (
self.checkpoint_interval > 0
), "`checkpoint_interval` must be greater than 0."
assert (
self.num_workers_per_device > 0
), "`num_workers_per_device` must be greater than 0."
@classmethod
def _add_parser_args(cls, parser):
"""Add listed args to command line parser."""
default_obj = cls()
num_ex_group = parser.add_mutually_exclusive_group(required=False)
num_ex_group.add_argument(
"--num-examples",
"-n",
type=int,
default=default_obj.num_examples,
help="The number of examples to process, -1 for entire dataset.",
)
num_ex_group.add_argument(
"--num-successful-examples",
type=int,
default=default_obj.num_successful_examples,
help="The number of successful adversarial examples we want.",
)
parser.add_argument(
"--num-examples-offset",
"-o",
type=int,
required=False,
default=default_obj.num_examples_offset,
help="The offset to start at in the dataset.",
)
parser.add_argument(
"--query-budget",
"-q",
type=int,
default=default_obj.query_budget,
help="The maximum number of model queries allowed per example attacked. Setting this overwrites the query budget set in `GoalFunction` object.",
)
parser.add_argument(
"--shuffle",
action="store_true",
default=default_obj.shuffle,
help="If `True`, shuffle the samples before we attack the dataset. Default is False.",
)
parser.add_argument(
"--attack-n",
action="store_true",
default=default_obj.attack_n,
help="Whether to run attack until `n` examples have been attacked (not skipped).",
)
parser.add_argument(
"--checkpoint-dir",
required=False,
type=str,
default=default_obj.checkpoint_dir,
help="The directory to save checkpoint files.",
)
parser.add_argument(
"--checkpoint-interval",
required=False,
type=int,
default=default_obj.checkpoint_interval,
help="If set, checkpoint will be saved after attacking every N examples. If not set, no checkpoints will be saved.",
)
parser.add_argument(
"--random-seed",
default=default_obj.random_seed,
type=int,
help="Random seed for reproducibility.",
)
parser.add_argument(
"--parallel",
action="store_true",
default=default_obj.parallel,
help="Run attack using multiple GPUs.",
)
parser.add_argument(
"--num-workers-per-device",
default=default_obj.num_workers_per_device,
type=int,
help="Number of worker processes to run per device.",
)
parser.add_argument(
"--log-to-txt",
nargs="?",
default=default_obj.log_to_txt,
const="",
type=str,
help="Path to which to save attack logs as a text file. Set this argument if you want to save text logs. "
"If the last part of the path ends with `.txt` extension, the path is assumed to path for output file.",
)
parser.add_argument(
"--log-to-csv",
nargs="?",
default=default_obj.log_to_csv,
const="",
type=str,
help="Path to which to save attack logs as a CSV file. Set this argument if you want to save CSV logs. "
"If the last part of the path ends with `.csv` extension, the path is assumed to path for output file.",
)
parser.add_argument(
"--log-summary-to-json",
nargs="?",
default=default_obj.log_summary_to_json,
const="",
type=str,
help="Path to which to save attack summary as a JSON file. Set this argument if you want to save attack results summary in a JSON. "
"If the last part of the path ends with `.json` extension, the path is assumed to path for output file.",
)
parser.add_argument(
"--csv-coloring-style",
default=default_obj.csv_coloring_style,
type=str,
help='Method for choosing how to mark perturbed parts of the text in CSV logs. Options are "file" and "plain". '
'"file" wraps text with double brackets `[[ <text> ]]` while "plain" does not mark any text. Default is "file".',
)
parser.add_argument(
"--log-to-visdom",
nargs="?",
default=None,
const='{"env": "main", "port": 8097, "hostname": "localhost"}',
type=json.loads,
help="Set this argument if you want to log attacks to Visdom. The dictionary should have the following "
'three keys and their corresponding values: `"env", "port", "hostname"`. '
'Example for command line use: `--log-to-visdom {"env": "main", "port": 8097, "hostname": "localhost"}`.',
)
parser.add_argument(
"--log-to-wandb",
nargs="?",
default=None,
const='{"project": "textattack"}',
type=json.loads,
help="Set this argument if you want to log attacks to WandB. The dictionary should have the following "
'key and its corresponding value: `"project"`. '
'Example for command line use: `--log-to-wandb {"project": "textattack"}`.',
)
parser.add_argument(
"--disable-stdout",
action="store_true",
default=default_obj.disable_stdout,
help="Disable logging attack results to stdout",
)
parser.add_argument(
"--silent",
action="store_true",
default=default_obj.silent,
help="Disable all logging",
)
parser.add_argument(
"--enable-advance-metrics",
action="store_true",
default=default_obj.enable_advance_metrics,
help="Enable calculation and display of optional advance post-hoc metrics like perplexity, USE distance, etc.",
)
return parser
@classmethod
def create_loggers_from_args(cls, args):
"""Creates AttackLogManager from an AttackArgs object."""
assert isinstance(
args, cls
), f"Expect args to be of type `{type(cls)}`, but got type `{type(args)}`."
# Create logger
attack_log_manager = textattack.loggers.AttackLogManager(args.metrics)
# Get current time for file naming
timestamp = time.strftime("%Y-%m-%d-%H-%M")
# if '--log-to-txt' specified with arguments
if args.log_to_txt is not None:
if args.log_to_txt.lower().endswith(".txt"):
txt_file_path = args.log_to_txt
else:
txt_file_path = os.path.join(args.log_to_txt, f"{timestamp}-log.txt")
dir_path = os.path.dirname(txt_file_path)
dir_path = dir_path if dir_path else "."
if not os.path.exists(dir_path):
os.makedirs(os.path.dirname(txt_file_path))
color_method = "file"
attack_log_manager.add_output_file(txt_file_path, color_method)
# if '--log-to-csv' specified with arguments
if args.log_to_csv is not None:
if args.log_to_csv.lower().endswith(".csv"):
csv_file_path = args.log_to_csv
else:
csv_file_path = os.path.join(args.log_to_csv, f"{timestamp}-log.csv")
dir_path = os.path.dirname(csv_file_path)
dir_path = dir_path if dir_path else "."
if not os.path.exists(dir_path):
os.makedirs(dir_path)
color_method = (
None if args.csv_coloring_style == "plain" else args.csv_coloring_style
)
attack_log_manager.add_output_csv(csv_file_path, color_method)
# if '--log-summary-to-json' specified with arguments
if args.log_summary_to_json is not None:
if args.log_summary_to_json.lower().endswith(".json"):
summary_json_file_path = args.log_summary_to_json
else:
summary_json_file_path = os.path.join(
args.log_summary_to_json, f"{timestamp}-attack_summary_log.json"
)
dir_path = os.path.dirname(summary_json_file_path)
dir_path = dir_path if dir_path else "."
if not os.path.exists(dir_path):
os.makedirs(os.path.dirname(summary_json_file_path))
attack_log_manager.add_output_summary_json(summary_json_file_path)
# Visdom
if args.log_to_visdom is not None:
attack_log_manager.enable_visdom(**args.log_to_visdom)
# Weights & Biases
if args.log_to_wandb is not None:
attack_log_manager.enable_wandb(**args.log_to_wandb)
# Stdout
if not args.disable_stdout and not sys.stdout.isatty():
attack_log_manager.disable_color()
elif not args.disable_stdout:
attack_log_manager.enable_stdout()
return attack_log_manager
@dataclass
class _CommandLineAttackArgs:
"""Attack args for command line execution.
This requires more arguments to
create ``Attack`` object as specified.
Args:
transformation (:obj:`str`, `optional`, defaults to :obj:`"word-swap-embedding"`):
Name of transformation to use.
constraints (:obj:`list[str]`, `optional`, defaults to :obj:`["repeat", "stopword"]`):
List of names of constraints to use.
goal_function (:obj:`str`, `optional`, defaults to :obj:`"untargeted-classification"`):
Name of goal function to use.
search_method (:obj:`str`, `optional`, defualts to :obj:`"greedy-word-wir"`):
Name of search method to use.
attack_recipe (:obj:`str`, `optional`, defaults to :obj:`None`):
Name of attack recipe to use.
.. note::
Setting this overrides any previous selection of transformation, constraints, goal function, and search method.
attack_from_file (:obj:`str`, `optional`, defaults to :obj:`None`):
Path of `.py` file from which to load attack from. Use `<path>^<variable_name>` to specifiy which variable to import from the file.
.. note::
If this is set, it overrides any previous selection of transformation, constraints, goal function, and search method
interactive (:obj:`bool`, `optional`, defaults to :obj:`False`):
If `True`, carry attack in interactive mode.
parallel (:obj:`bool`, `optional`, defaults to :obj:`False`):
If `True`, attack in parallel.
model_batch_size (:obj:`int`, `optional`, defaults to :obj:`32`):
The batch size for making queries to the victim model.
model_cache_size (:obj:`int`, `optional`, defaults to :obj:`2**18`):
The maximum number of items to keep in the model results cache at once.
constraint-cache-size (:obj:`int`, `optional`, defaults to :obj:`2**18`):
The maximum number of items to keep in the constraints cache at once.
"""
transformation: str = "word-swap-embedding"
constraints: list = field(default_factory=lambda: ["repeat", "stopword"])
goal_function: str = "untargeted-classification"
search_method: str = "greedy-word-wir"
attack_recipe: str = None
attack_from_file: str = None
interactive: bool = False
parallel: bool = False
model_batch_size: int = 32
model_cache_size: int = 2**18
constraint_cache_size: int = 2**18
@classmethod
def _add_parser_args(cls, parser):
"""Add listed args to command line parser."""
default_obj = cls()
transformation_names = set(BLACK_BOX_TRANSFORMATION_CLASS_NAMES.keys()) | set(
WHITE_BOX_TRANSFORMATION_CLASS_NAMES.keys()
)
parser.add_argument(
"--transformation",
type=str,
required=False,
default=default_obj.transformation,
help='The transformation to apply. Usage: "--transformation {transformation}:{arg_1}={value_1},{arg_3}={value_3}". Choices: '
+ str(transformation_names),
)
parser.add_argument(
"--constraints",
type=str,
required=False,
nargs="*",
default=default_obj.constraints,
help='Constraints to add to the attack. Usage: "--constraints {constraint}:{arg_1}={value_1},{arg_3}={value_3}". Choices: '
+ str(CONSTRAINT_CLASS_NAMES.keys()),
)
goal_function_choices = ", ".join(GOAL_FUNCTION_CLASS_NAMES.keys())
parser.add_argument(
"--goal-function",
"-g",
default=default_obj.goal_function,
help=f"The goal function to use. choices: {goal_function_choices}",
)
attack_group = parser.add_mutually_exclusive_group(required=False)
search_choices = ", ".join(SEARCH_METHOD_CLASS_NAMES.keys())
attack_group.add_argument(
"--search-method",
"--search",
"-s",
type=str,
required=False,
default=default_obj.search_method,
help=f"The search method to use. choices: {search_choices}",
)
attack_group.add_argument(
"--attack-recipe",
"--recipe",
"-r",
type=str,
required=False,
default=default_obj.attack_recipe,
help="full attack recipe (overrides provided goal function, transformation & constraints)",
choices=ATTACK_RECIPE_NAMES.keys(),
)
attack_group.add_argument(
"--attack-from-file",
type=str,
required=False,
default=default_obj.attack_from_file,
help="Path of `.py` file from which to load attack from. Use `<path>^<variable_name>` to specifiy which variable to import from the file.",
)
parser.add_argument(
"--interactive",
action="store_true",
default=default_obj.interactive,
help="Whether to run attacks interactively.",
)
parser.add_argument(
"--model-batch-size",
type=int,
default=default_obj.model_batch_size,
help="The batch size for making calls to the model.",
)
parser.add_argument(
"--model-cache-size",
type=int,
default=default_obj.model_cache_size,
help="The maximum number of items to keep in the model results cache at once.",
)
parser.add_argument(
"--constraint-cache-size",
type=int,
default=default_obj.constraint_cache_size,
help="The maximum number of items to keep in the constraints cache at once.",
)
return parser
@classmethod
def _create_transformation_from_args(cls, args, model_wrapper):
"""Create `Transformation` based on provided `args` and
`model_wrapper`."""
transformation_name = args.transformation
if ARGS_SPLIT_TOKEN in transformation_name:
transformation_name, params = transformation_name.split(ARGS_SPLIT_TOKEN)
if transformation_name in WHITE_BOX_TRANSFORMATION_CLASS_NAMES:
transformation = eval(
f"{WHITE_BOX_TRANSFORMATION_CLASS_NAMES[transformation_name]}(model_wrapper.model, {params})"
)
elif transformation_name in BLACK_BOX_TRANSFORMATION_CLASS_NAMES:
transformation = eval(
f"{BLACK_BOX_TRANSFORMATION_CLASS_NAMES[transformation_name]}({params})"
)
else:
raise ValueError(
f"Error: unsupported transformation {transformation_name}"
)
else:
if transformation_name in WHITE_BOX_TRANSFORMATION_CLASS_NAMES:
transformation = eval(
f"{WHITE_BOX_TRANSFORMATION_CLASS_NAMES[transformation_name]}(model_wrapper.model)"
)
elif transformation_name in BLACK_BOX_TRANSFORMATION_CLASS_NAMES:
transformation = eval(
f"{BLACK_BOX_TRANSFORMATION_CLASS_NAMES[transformation_name]}()"
)
else:
raise ValueError(
f"Error: unsupported transformation {transformation_name}"
)
return transformation
@classmethod
def _create_goal_function_from_args(cls, args, model_wrapper):
"""Create `GoalFunction` based on provided `args` and
`model_wrapper`."""
goal_function = args.goal_function
if ARGS_SPLIT_TOKEN in goal_function:
goal_function_name, params = goal_function.split(ARGS_SPLIT_TOKEN)
if goal_function_name not in GOAL_FUNCTION_CLASS_NAMES:
raise ValueError(
f"Error: unsupported goal_function {goal_function_name}"
)
goal_function = eval(
f"{GOAL_FUNCTION_CLASS_NAMES[goal_function_name]}(model_wrapper, {params})"
)
elif goal_function in GOAL_FUNCTION_CLASS_NAMES:
goal_function = eval(
f"{GOAL_FUNCTION_CLASS_NAMES[goal_function]}(model_wrapper)"
)
else:
raise ValueError(f"Error: unsupported goal_function {goal_function}")
if args.query_budget:
goal_function.query_budget = args.query_budget
goal_function.model_cache_size = args.model_cache_size
goal_function.batch_size = args.model_batch_size
return goal_function
@classmethod
def _create_constraints_from_args(cls, args):
"""Create list of `Constraints` based on provided `args`."""
if not args.constraints:
return []
_constraints = []
for constraint in args.constraints:
if ARGS_SPLIT_TOKEN in constraint:
constraint_name, params = constraint.split(ARGS_SPLIT_TOKEN)
if constraint_name not in CONSTRAINT_CLASS_NAMES:
raise ValueError(f"Error: unsupported constraint {constraint_name}")
_constraints.append(
eval(f"{CONSTRAINT_CLASS_NAMES[constraint_name]}({params})")
)
elif constraint in CONSTRAINT_CLASS_NAMES:
_constraints.append(eval(f"{CONSTRAINT_CLASS_NAMES[constraint]}()"))
else:
raise ValueError(f"Error: unsupported constraint {constraint}")
return _constraints
@classmethod
def _create_attack_from_args(cls, args, model_wrapper):
"""Given ``CommandLineArgs`` and ``ModelWrapper``, return specified
``Attack`` object."""
assert isinstance(
args, cls
), f"Expect args to be of type `{type(cls)}`, but got type `{type(args)}`."
if args.attack_recipe:
if ARGS_SPLIT_TOKEN in args.attack_recipe:
recipe_name, params = args.attack_recipe.split(ARGS_SPLIT_TOKEN)
if recipe_name not in ATTACK_RECIPE_NAMES:
raise ValueError(f"Error: unsupported recipe {recipe_name}")
recipe = eval(
f"{ATTACK_RECIPE_NAMES[recipe_name]}.build(model_wrapper, {params})"
)
elif args.attack_recipe in ATTACK_RECIPE_NAMES:
recipe = eval(
f"{ATTACK_RECIPE_NAMES[args.attack_recipe]}.build(model_wrapper)"
)
else:
raise ValueError(f"Invalid recipe {args.attack_recipe}")
if args.query_budget:
recipe.goal_function.query_budget = args.query_budget
recipe.goal_function.model_cache_size = args.model_cache_size
recipe.goal_function.batch_size = args.model_batch_size
recipe.constraint_cache_size = args.constraint_cache_size
return recipe
elif args.attack_from_file:
if ARGS_SPLIT_TOKEN in args.attack_from_file:
attack_file, attack_name = args.attack_from_file.split(ARGS_SPLIT_TOKEN)
else:
attack_file, attack_name = args.attack_from_file, "attack"
attack_module = load_module_from_file(attack_file)
if not hasattr(attack_module, attack_name):
raise ValueError(
f"Loaded `{attack_file}` but could not find `{attack_name}`."
)
attack_func = getattr(attack_module, attack_name)
return attack_func(model_wrapper)
else:
goal_function = cls._create_goal_function_from_args(args, model_wrapper)
transformation = cls._create_transformation_from_args(args, model_wrapper)
constraints = cls._create_constraints_from_args(args)
if ARGS_SPLIT_TOKEN in args.search_method:
search_name, params = args.search_method.split(ARGS_SPLIT_TOKEN)
if search_name not in SEARCH_METHOD_CLASS_NAMES:
raise ValueError(f"Error: unsupported search {search_name}")
search_method = eval(
f"{SEARCH_METHOD_CLASS_NAMES[search_name]}({params})"
)
elif args.search_method in SEARCH_METHOD_CLASS_NAMES:
search_method = eval(
f"{SEARCH_METHOD_CLASS_NAMES[args.search_method]}()"
)
else:
raise ValueError(f"Error: unsupported attack {args.search_method}")
return Attack(
goal_function,
constraints,
transformation,
search_method,
constraint_cache_size=args.constraint_cache_size,
)
# This neat trick allows use to reorder the arguments to avoid TypeErrors commonly found when inheriting dataclass.
# https://stackoverflow.com/questions/51575931/class-inheritance-in-python-3-7-dataclasses
@dataclass
class CommandLineAttackArgs(AttackArgs, _CommandLineAttackArgs, DatasetArgs, ModelArgs):
@classmethod
def _add_parser_args(cls, parser):
"""Add listed args to command line parser."""
parser = ModelArgs._add_parser_args(parser)
parser = DatasetArgs._add_parser_args(parser)
parser = _CommandLineAttackArgs._add_parser_args(parser)
parser = AttackArgs._add_parser_args(parser)
return parser