给你一个整数数组 nums
和一个整数 k
。请你从 nums
中满足下述条件的全部子数组中找出最大子数组和:
- 子数组的长度是
k
,且 - 子数组中的所有元素 各不相同 。
返回满足题面要求的最大子数组和。如果不存在子数组满足这些条件,返回 0
。
子数组 是数组中一段连续非空的元素序列。
示例 1:
输入:nums = [1,5,4,2,9,9,9], k = 3 输出:15 解释:nums 中长度为 3 的子数组是: - [1,5,4] 满足全部条件,和为 10 。 - [5,4,2] 满足全部条件,和为 11 。 - [4,2,9] 满足全部条件,和为 15 。 - [2,9,9] 不满足全部条件,因为元素 9 出现重复。 - [9,9,9] 不满足全部条件,因为元素 9 出现重复。 因为 15 是满足全部条件的所有子数组中的最大子数组和,所以返回 15 。
示例 2:
输入:nums = [4,4,4], k = 3 输出:0 解释:nums 中长度为 3 的子数组是: - [4,4,4] 不满足全部条件,因为元素 4 出现重复。 因为不存在满足全部条件的子数组,所以返回 0 。
提示:
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
方法一:滑动窗口
我们维护一个长度为 cnt
记录窗口中每个数字出现的次数,用 变量
时间复杂度 nums
的长度。
class Solution:
def maximumSubarraySum(self, nums: List[int], k: int) -> int:
n = len(nums)
cnt = Counter(nums[:k])
s = sum(nums[:k])
ans = 0
for i in range(k, n):
if len(cnt) == k:
ans = max(ans, s)
cnt[nums[i]] += 1
cnt[nums[i - k]] -= 1
s += nums[i]
s -= nums[i - k]
if cnt[nums[i - k]] == 0:
cnt.pop(nums[i - k])
if len(cnt) == k:
ans = max(ans, s)
return ans
class Solution {
public long maximumSubarraySum(int[] nums, int k) {
int n = nums.length;
Map<Integer, Integer> cnt = new HashMap<>(k);
long s = 0;
for (int i = 0; i < k; ++i) {
cnt.put(nums[i], cnt.getOrDefault(nums[i], 0) + 1);
s += nums[i];
}
long ans = 0;
for (int i = k; i < n; ++i) {
if (cnt.size() == k) {
ans = Math.max(ans, s);
}
cnt.put(nums[i], cnt.getOrDefault(nums[i], 0) + 1);
cnt.put(nums[i - k], cnt.getOrDefault(nums[i - k], 0) - 1);
if (cnt.get(nums[i - k]) == 0) {
cnt.remove(nums[i - k]);
}
s += nums[i];
s -= nums[i - k];
}
if (cnt.size() == k) {
ans = Math.max(ans, s);
}
return ans;
}
}
class Solution {
public:
long long maximumSubarraySum(vector<int>& nums, int k) {
int n = nums.size();
unordered_map<int, int> cnt;
long long s = 0, ans = 0;
for (int i = 0; i < k; ++i) {
cnt[nums[i]]++;
s += nums[i];
}
for (int i = k; i < n; ++i) {
if (cnt.size() == k) ans = max(ans, s);
cnt[nums[i]]++;
cnt[nums[i - k]]--;
if (cnt[nums[i - k]] == 0) cnt.erase(nums[i - k]);
s += nums[i];
s -= nums[i - k];
}
if (cnt.size() == k) ans = max(ans, s);
return ans;
}
};
func maximumSubarraySum(nums []int, k int) int64 {
n := len(nums)
cnt := map[int]int{}
s, ans := 0, 0
for i := 0; i < k; i++ {
cnt[nums[i]]++
s += nums[i]
}
for i := k; i < n; i++ {
if len(cnt) == k {
ans = max(ans, s)
}
cnt[nums[i]]++
cnt[nums[i-k]]--
if cnt[nums[i-k]] == 0 {
delete(cnt, nums[i-k])
}
s += nums[i]
s -= nums[i-k]
}
if len(cnt) == k {
ans = max(ans, s)
}
return int64(ans)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}