You are given a string s
consisting of only lowercase English letters. In one operation, you can:
- Delete the entire string
s
, or - Delete the first
i
letters ofs
if the firsti
letters ofs
are equal to the followingi
letters ins
, for anyi
in the range1 <= i <= s.length / 2
.
For example, if s = "ababc"
, then in one operation, you could delete the first two letters of s
to get "abc"
, since the first two letters of s
and the following two letters of s
are both equal to "ab"
.
Return the maximum number of operations needed to delete all of s
.
Example 1:
Input: s = "abcabcdabc" Output: 2 Explanation: - Delete the first 3 letters ("abc") since the next 3 letters are equal. Now, s = "abcdabc". - Delete all the letters. We used 2 operations so return 2. It can be proven that 2 is the maximum number of operations needed. Note that in the second operation we cannot delete "abc" again because the next occurrence of "abc" does not happen in the next 3 letters.
Example 2:
Input: s = "aaabaab" Output: 4 Explanation: - Delete the first letter ("a") since the next letter is equal. Now, s = "aabaab". - Delete the first 3 letters ("aab") since the next 3 letters are equal. Now, s = "aab". - Delete the first letter ("a") since the next letter is equal. Now, s = "ab". - Delete all the letters. We used 4 operations so return 4. It can be proven that 4 is the maximum number of operations needed.
Example 3:
Input: s = "aaaaa" Output: 5 Explanation: In each operation, we can delete the first letter of s.
Constraints:
1 <= s.length <= 4000
s
consists only of lowercase English letters.
class Solution:
def deleteString(self, s: str) -> int:
@cache
def dfs(i):
if i == n:
return 0
ans = 1
m = (n - i) >> 1
for j in range(1, m + 1):
if s[i: i + j] == s[i + j: i + j + j]:
ans = max(ans, 1 + dfs(i + j))
return ans
n = len(s)
return dfs(0)
class Solution:
def deleteString(self, s: str) -> int:
n = len(s)
lcp = [[0] * (n + 1) for _ in range(n + 1)]
for i in range(n - 1, -1, -1):
for j in range(n - 1, -1, -1):
if s[i] == s[j]:
lcp[i][j] = 1 + lcp[i + 1][j + 1]
dp = [1] * n
for i in range(n - 1, -1, -1):
for j in range(1, (n - i) // 2 + 1):
if lcp[i][i + j] >= j:
dp[i] = max(dp[i], dp[i + j] + 1)
return dp[0]
class Solution {
public int deleteString(String s) {
int n = s.length();
int[][] lcp = new int[n + 1][n + 1];
for (int i = n - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (s.charAt(i) == s.charAt(j)) {
lcp[i][j] = 1 + lcp[i + 1][j + 1];
}
}
}
int[] dp = new int[n];
Arrays.fill(dp, 1);
for (int i = n - 1; i >= 0; --i) {
for (int j = 1; j <= (n - i) / 2; ++j) {
if (lcp[i][i + j] >= j) {
dp[i] = Math.max(dp[i], dp[i + j] + 1);
}
}
}
return dp[0];
}
}
class Solution {
public:
int deleteString(string s) {
int n = s.size();
int lcp[n + 1][n + 1];
memset(lcp, 0, sizeof lcp);
for (int i = n - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (s[i] == s[j]) {
lcp[i][j] = 1 + lcp[i + 1][j + 1];
}
}
}
int dp[n];
for (int i = n - 1; i >= 0; --i) {
dp[i] = 1;
for (int j = 1; j <= (n - i) / 2; ++j) {
if (lcp[i][i + j] >= j) {
dp[i] = max(dp[i], dp[i + j] + 1);
}
}
}
return dp[0];
}
};
func deleteString(s string) int {
n := len(s)
lcp := make([][]int, n+1)
for i := range lcp {
lcp[i] = make([]int, n+1)
}
for i := n - 1; i >= 0; i-- {
for j := n - 1; j >= 0; j-- {
if s[i] == s[j] {
lcp[i][j] = 1 + lcp[i+1][j+1]
}
}
}
dp := make([]int, n)
for i := n - 1; i >= 0; i-- {
dp[i] = 1
for j := 1; j <= (n-i)/2; j++ {
if lcp[i][i+j] >= j {
dp[i] = max(dp[i], dp[i+j]+1)
}
}
}
return dp[0]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}