You are given two 0-indexed integer arrays nums1
and nums2
, each of size n
, and an integer diff
. Find the number of pairs (i, j)
such that:
0 <= i < j <= n - 1
andnums1[i] - nums1[j] <= nums2[i] - nums2[j] + diff
.
Return the number of pairs that satisfy the conditions.
Example 1:
Input: nums1 = [3,2,5], nums2 = [2,2,1], diff = 1 Output: 3 Explanation: There are 3 pairs that satisfy the conditions: 1. i = 0, j = 1: 3 - 2 <= 2 - 2 + 1. Since i < j and 1 <= 1, this pair satisfies the conditions. 2. i = 0, j = 2: 3 - 5 <= 2 - 1 + 1. Since i < j and -2 <= 2, this pair satisfies the conditions. 3. i = 1, j = 2: 2 - 5 <= 2 - 1 + 1. Since i < j and -3 <= 2, this pair satisfies the conditions. Therefore, we return 3.
Example 2:
Input: nums1 = [3,-1], nums2 = [-2,2], diff = -1 Output: 0 Explanation: Since there does not exist any pair that satisfies the conditions, we return 0.
Constraints:
n == nums1.length == nums2.length
2 <= n <= 105
-104 <= nums1[i], nums2[i] <= 104
-104 <= diff <= 104
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, delta):
while x <= self.n:
self.c[x] += delta
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x:
s += self.c[x]
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def numberOfPairs(self, nums1: List[int], nums2: List[int], diff: int) -> int:
tree = BinaryIndexedTree(10**5)
ans = 0
for a, b in zip(nums1, nums2):
v = a - b
ans += tree.query(v + diff + 40000)
tree.update(v + 40000, 1)
return ans
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public static final int lowbit(int x) {
return x & -x;
}
public void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
}
class Solution {
public long numberOfPairs(int[] nums1, int[] nums2, int diff) {
BinaryIndexedTree tree = new BinaryIndexedTree(100000);
long ans = 0;
for (int i = 0; i < nums1.length; ++i) {
int v = nums1[i] - nums2[i];
ans += tree.query(v + diff + 40000);
tree.update(v + 40000, 1);
}
return ans;
}
}
class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) { }
void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int diff) {
BinaryIndexedTree* tree = new BinaryIndexedTree(1e5);
long long ans = 0;
for (int i = 0; i < nums1.size(); ++i) {
int v = nums1[i] - nums2[i];
ans += tree->query(v + diff + 40000);
tree->update(v + 40000, 1);
}
return ans;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= this.lowbit(x)
}
return s
}
func numberOfPairs(nums1 []int, nums2 []int, diff int) int64 {
tree := newBinaryIndexedTree(100000)
ans := 0
for i := range nums1 {
v := nums1[i] - nums2[i]
ans += tree.query(v + diff + 40000)
tree.update(v+40000, 1)
}
return int64(ans)
}