给你一棵 完美 二叉树的根节点 root
,请你反转这棵树中每个 奇数 层的节点值。
- 例如,假设第 3 层的节点值是
[2,1,3,4,7,11,29,18]
,那么反转后它应该变成[18,29,11,7,4,3,1,2]
。
反转后,返回树的根节点。
完美 二叉树需满足:二叉树的所有父节点都有两个子节点,且所有叶子节点都在同一层。
节点的 层数 等于该节点到根节点之间的边数。
示例 1:
输入:root = [2,3,5,8,13,21,34] 输出:[2,5,3,8,13,21,34] 解释: 这棵树只有一个奇数层。 在第 1 层的节点分别是 3、5 ,反转后为 5、3 。
示例 2:
输入:root = [7,13,11] 输出:[7,11,13] 解释: 在第 1 层的节点分别是 13、11 ,反转后为 11、13 。
示例 3:
输入:root = [0,1,2,0,0,0,0,1,1,1,1,2,2,2,2] 输出:[0,2,1,0,0,0,0,2,2,2,2,1,1,1,1] 解释:奇数层由非零值组成。 在第 1 层的节点分别是 1、2 ,反转后为 2、1 。 在第 3 层的节点分别是 1、1、1、1、2、2、2、2 ,反转后为 2、2、2、2、1、1、1、1 。
提示:
- 树中的节点数目在范围
[1, 214]
内 0 <= Node.val <= 105
root
是一棵 完美 二叉树
方法一:BFS
BFS 遍历二叉树,遍历到奇数层时,反转该层节点的值。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def reverseOddLevels(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
q = deque([root])
i = 0
while q:
t = []
for _ in range(len(q)):
node = q.popleft()
if i & 1:
t.append(node)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
if t:
j, k = 0, len(t) - 1
while j < k:
t[j].val, t[k].val = t[k].val, t[j].val
j, k = j + 1, k - 1
i += 1
return root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode reverseOddLevels(TreeNode root) {
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
int i = 0;
while (!q.isEmpty()) {
List<TreeNode> t = new ArrayList<>();
for (int n = q.size(); n > 0; --n) {
TreeNode node = q.pollFirst();
if (i % 2 == 1) {
t.add(node);
}
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
if (!t.isEmpty()) {
int j = 0, k = t.size() - 1;
for (; j < k; ++j, --k) {
int v = t.get(j).val;
t.get(j).val = t.get(k).val;
t.get(k).val = v;
}
}
++i;
}
return root;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* reverseOddLevels(TreeNode* root) {
queue<TreeNode*> q{{root}};
int i = 0;
vector<TreeNode*> t;
while (!q.empty()) {
t.clear();
for (int n = q.size(); n; --n) {
TreeNode* node = q.front();
q.pop();
if (i & 1) {
t.push_back(node);
}
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
if (t.size()) {
int j = 0, k = t.size() - 1;
for (; j < k; ++j, --k) {
int v = t[j]->val;
t[j]->val = t[k]->val;
t[k]->val = v;
}
}
++i;
}
return root;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func reverseOddLevels(root *TreeNode) *TreeNode {
q := []*TreeNode{root}
i := 0
for len(q) > 0 {
t := []*TreeNode{}
for n := len(q); n > 0; n-- {
node := q[0]
q = q[1:]
if i%2 == 1 {
t = append(t, node)
}
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
if len(t) > 0 {
j, k := 0, len(t)-1
for ; j < k; j, k = j+1, k-1 {
v := t[j].Val
t[j].Val = t[k].Val
t[k].Val = v
}
}
i++
}
return root
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function reverseOddLevels(root: TreeNode | null): TreeNode | null {
const queue = [root];
let d = 0;
while (queue.length !== 0) {
const n = queue.length;
const t: TreeNode[] = [];
for (let i = 0; i < n; i++) {
const node = queue.shift();
if (d % 2 == 1) {
t.push(node);
}
node.left && queue.push(node.left);
node.right && queue.push(node.right);
}
const m = t.length;
for (let i = 0; i < m >> 1; i++) {
[t[i].val, t[m - 1 - i].val] = [t[m - 1 - i].val, t[i].val];
}
d++;
}
return root;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
impl Solution {
fn create_tree(vals: &Vec<Vec<i32>>, i: usize, j: usize) -> Option<Rc<RefCell<TreeNode>>> {
if i == vals.len() {
return None;
}
Some(Rc::new(RefCell::new(TreeNode {
val: vals[i][j],
left: Self::create_tree(vals, i + 1, j * 2),
right: Self::create_tree(vals, i + 1, j * 2 + 1),
})))
}
pub fn reverse_odd_levels(
root: Option<Rc<RefCell<TreeNode>>>,
) -> Option<Rc<RefCell<TreeNode>>> {
let mut queue = VecDeque::new();
queue.push_back(root);
let mut d = 0;
let mut vals = Vec::new();
while !queue.is_empty() {
let mut val = Vec::new();
for _ in 0..queue.len() {
let mut node = queue.pop_front().unwrap();
let mut node = node.as_mut().unwrap().borrow_mut();
val.push(node.val);
if node.left.is_some() {
queue.push_back(node.left.take());
}
if node.right.is_some() {
queue.push_back(node.right.take());
}
}
if d % 2 == 1 {
val.reverse();
}
vals.push(val);
d += 1;
}
Self::create_tree(&vals, 0, 0)
}
}