Skip to content

Latest commit

 

History

History
151 lines (123 loc) · 3.24 KB

File metadata and controls

151 lines (123 loc) · 3.24 KB

中文文档

Description

You are given an array nums consisting of positive integers.

Return the number of subarrays of nums that are in strictly increasing order.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [1,3,5,4,4,6]
Output: 10
Explanation: The strictly increasing subarrays are the following:
- Subarrays of length 1: [1], [3], [5], [4], [4], [6].
- Subarrays of length 2: [1,3], [3,5], [4,6].
- Subarrays of length 3: [1,3,5].
The total number of subarrays is 6 + 3 + 1 = 10.

Example 2:

Input: nums = [1,2,3,4,5]
Output: 15
Explanation: Every subarray is strictly increasing. There are 15 possible subarrays that we can take.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 106

Solutions

Python3

class Solution:
    def countSubarrays(self, nums: List[int]) -> int:
        ans = i = 0
        while i < len(nums):
            j = i + 1
            while j < len(nums) and nums[j] > nums[j - 1]:
                j += 1
            cnt = j - i
            ans += (1 + cnt) * cnt // 2
            i = j
        return ans

Java

class Solution {
    public long countSubarrays(int[] nums) {
        long ans = 0;
        int i = 0, n = nums.length;
        while (i < n) {
            int j = i + 1;
            while (j < n && nums[j] > nums[j - 1]) {
                ++j;
            }
            long cnt = j - i;
            ans += (1 + cnt) * cnt / 2;
            i = j;
        }
        return ans;
    }
}

C++

class Solution {
public:
    long long countSubarrays(vector<int>& nums) {
        long long ans = 0;
        int i = 0, n = nums.size();
        while (i < n) {
            int j = i + 1;
            while (j < n && nums[j] > nums[j - 1]) {
                ++j;
            }
            int cnt = j - i;
            ans += 1ll * (1 + cnt) * cnt / 2;
            i = j;
        }
        return ans;
    }
};

Go

func countSubarrays(nums []int) int64 {
	ans := 0
	i, n := 0, len(nums)
	for i < n {
		j := i + 1
		for j < n && nums[j] > nums[j-1] {
			j++
		}
		cnt := j - i
		ans += (1 + cnt) * cnt / 2
		i = j
	}
	return int64(ans)
}

TypeScript

function countSubarrays(nums: number[]): number {
    let ans = 0;
    let i = 0;
    const n = nums.length;
    while (i < n) {
        let j = i + 1;
        while (j < n && nums[j] > nums[j - 1]) {
            ++j;
        }
        const cnt = j - i;
        ans += ((1 + cnt) * cnt) / 2;
        i = j;
    }
    return ans;
}

...