给你一个整数数组 nums
和一个整数 threshold
。
找到长度为 k
的 nums
子数组,满足数组中 每个 元素都 大于 threshold / k
。
请你返回满足要求的 任意 子数组的 大小 。如果没有这样的子数组,返回 -1
。
子数组 是数组中一段连续非空的元素序列。
示例 1:
输入:nums = [1,3,4,3,1], threshold = 6 输出:3 解释:子数组 [3,4,3] 大小为 3 ,每个元素都大于 6 / 3 = 2 。 注意这是唯一合法的子数组。
示例 2:
输入:nums = [6,5,6,5,8], threshold = 7 输出:1 解释:子数组 [8] 大小为 1 ,且 8 > 7 / 1 = 7 。所以返回 1 。 注意子数组 [6,5] 大小为 2 ,每个元素都大于 7 / 2 = 3.5 。 类似的,子数组 [6,5,6] ,[6,5,6,5] ,[6,5,6,5,8] 都是符合条件的子数组。 所以返回 2, 3, 4 和 5 都可以。
提示:
1 <= nums.length <= 105
1 <= nums[i], threshold <= 109
方法一:并查集
考虑从大到小遍历数组
遍历过程中:
否则遍历结束,返回
时间复杂度
相似题目:1562. 查找大小为 M 的最新分组
方法二:单调栈
利用单调栈,得到以当前元素
那么对于当前元素
否则遍历结束,返回
时间复杂度
class Solution:
def validSubarraySize(self, nums: List[int], threshold: int) -> int:
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
def merge(a, b):
pa, pb = find(a), find(b)
if pa == pb:
return
p[pa] = pb
size[pb] += size[pa]
n = len(nums)
p = list(range(n))
size = [1] * n
arr = sorted(zip(nums, range(n)), reverse=True)
vis = [False] * n
for v, i in arr:
if i and vis[i - 1]:
merge(i, i - 1)
if i < n - 1 and vis[i + 1]:
merge(i, i + 1)
if v > threshold // size[find(i)]:
return size[find(i)]
vis[i] = True
return -1
class Solution:
def validSubarraySize(self, nums: List[int], threshold: int) -> int:
n = len(nums)
left = [-1] * n
right = [n] * n
stk = []
for i, v in enumerate(nums):
while stk and nums[stk[-1]] >= v:
stk.pop()
if stk:
left[i] = stk[-1]
stk.append(i)
stk = []
for i in range(n - 1, -1, -1):
while stk and nums[stk[-1]] >= nums[i]:
stk.pop()
if stk:
right[i] = stk[-1]
stk.append(i)
for i, v in enumerate(nums):
k = right[i] - left[i] - 1
if v > threshold // k:
return k
return -1
class Solution {
private int[] p;
private int[] size;
public int validSubarraySize(int[] nums, int threshold) {
int n = nums.length;
p = new int[n];
size = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
size[i] = 1;
}
int[][] arr = new int[n][2];
for (int i = 0; i < n; ++i) {
arr[i][0] = nums[i];
arr[i][1] = i;
}
Arrays.sort(arr, (a, b) -> b[0] - a[0]);
boolean[] vis = new boolean[n];
for (int[] e : arr) {
int v = e[0], i = e[1];
if (i > 0 && vis[i - 1]) {
merge(i, i - 1);
}
if (i < n - 1 && vis[i + 1]) {
merge(i, i + 1);
}
if (v > threshold / size[find(i)]) {
return size[find(i)];
}
vis[i] = true;
}
return -1;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
private void merge(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return;
}
p[pa] = pb;
size[pb] += size[pa];
}
}
class Solution {
public int validSubarraySize(int[] nums, int threshold) {
int n = nums.length;
int[] left = new int[n];
int[] right = new int[n];
Arrays.fill(left, -1);
Arrays.fill(right, n);
Deque<Integer> stk = new ArrayDeque<>();
for (int i = 0; i < n; ++i) {
int v = nums[i];
while (!stk.isEmpty() && nums[stk.peek()] >= v) {
stk.pop();
}
if (!stk.isEmpty()) {
left[i] = stk.peek();
}
stk.push(i);
}
stk.clear();
for (int i = n - 1; i >= 0; --i) {
int v = nums[i];
while (!stk.isEmpty() && nums[stk.peek()] >= v) {
stk.pop();
}
if (!stk.isEmpty()) {
right[i] = stk.peek();
}
stk.push(i);
}
for (int i = 0; i < n; ++i) {
int v = nums[i];
int k = right[i] - left[i] - 1;
if (v > threshold / k) {
return k;
}
}
return -1;
}
}
using pii = pair<int, int>;
class Solution {
public:
vector<int> p;
vector<int> size;
int validSubarraySize(vector<int>& nums, int threshold) {
int n = nums.size();
p.resize(n);
for (int i = 0; i < n; ++i) p[i] = i;
size.assign(n, 1);
vector<pii> arr(n);
for (int i = 0; i < n; ++i) arr[i] = {nums[i], i};
sort(arr.begin(), arr.end());
vector<bool> vis(n);
for (int j = n - 1; ~j; --j) {
int v = arr[j].first, i = arr[j].second;
if (i && vis[i - 1]) merge(i, i - 1);
if (j < n - 1 && vis[i + 1]) merge(i, i + 1);
if (v > threshold / size[find(i)]) return size[find(i)];
vis[i] = true;
}
return -1;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void merge(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) return;
p[pa] = pb;
size[pb] += size[pa];
}
};
class Solution {
public:
int validSubarraySize(vector<int>& nums, int threshold) {
int n = nums.size();
vector<int> left(n, -1);
vector<int> right(n, n);
stack<int> stk;
for (int i = 0; i < n; ++i)
{
int v = nums[i];
while (!stk.empty() && nums[stk.top()] >= v) stk.pop();
if (!stk.empty()) left[i] = stk.top();
stk.push(i);
}
stk = stack<int>();
for (int i = n - 1; ~i; --i)
{
int v = nums[i];
while (!stk.empty() && nums[stk.top()] >= v) stk.pop();
if (!stk.empty()) right[i] = stk.top();
stk.push(i);
}
for (int i = 0; i < n; ++i)
{
int v = nums[i];
int k = right[i] - left[i] - 1;
if (v > threshold / k) return k;
}
return -1;
}
};
func validSubarraySize(nums []int, threshold int) int {
n := len(nums)
p := make([]int, n)
size := make([]int, n)
for i := range p {
p[i] = i
size[i] = 1
}
var find func(int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
merge := func(a, b int) {
pa, pb := find(a), find(b)
if pa == pb {
return
}
p[pa] = pb
size[pb] += size[pa]
}
arr := make([][]int, n)
for i, v := range nums {
arr[i] = []int{v, i}
}
sort.Slice(arr, func(i, j int) bool {
return arr[i][0] > arr[j][0]
})
vis := make([]bool, n)
for _, e := range arr {
v, i := e[0], e[1]
if i > 0 && vis[i-1] {
merge(i, i-1)
}
if i < n-1 && vis[i+1] {
merge(i, i+1)
}
if v > threshold/size[find(i)] {
return size[find(i)]
}
vis[i] = true
}
return -1
}
func validSubarraySize(nums []int, threshold int) int {
n := len(nums)
left := make([]int, n)
right := make([]int, n)
for i := range left {
left[i] = -1
right[i] = n
}
var stk []int
for i, v := range nums {
for len(stk) > 0 && nums[stk[len(stk)-1]] >= v {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
left[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
stk = []int{}
for i := n - 1; i >= 0; i-- {
v := nums[i]
for len(stk) > 0 && nums[stk[len(stk)-1]] >= v {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
right[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
for i, v := range nums {
k := right[i] - left[i] - 1
if v > threshold/k {
return k
}
}
return -1
}