On day 1
, one person discovers a secret.
You are given an integer delay
, which means that each person will share the secret with a new person every day, starting from delay
days after discovering the secret. You are also given an integer forget
, which means that each person will forget the secret forget
days after discovering it. A person cannot share the secret on the same day they forgot it, or on any day afterwards.
Given an integer n
, return the number of people who know the secret at the end of day n
. Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: n = 6, delay = 2, forget = 4 Output: 5 Explanation: Day 1: Suppose the first person is named A. (1 person) Day 2: A is the only person who knows the secret. (1 person) Day 3: A shares the secret with a new person, B. (2 people) Day 4: A shares the secret with a new person, C. (3 people) Day 5: A forgets the secret, and B shares the secret with a new person, D. (3 people) Day 6: B shares the secret with E, and C shares the secret with F. (5 people)
Example 2:
Input: n = 4, delay = 1, forget = 3 Output: 6 Explanation: Day 1: The first person is named A. (1 person) Day 2: A shares the secret with B. (2 people) Day 3: A and B share the secret with 2 new people, C and D. (4 people) Day 4: A forgets the secret. B, C, and D share the secret with 3 new people. (6 people)
Constraints:
2 <= n <= 1000
1 <= delay < forget <= n
class Solution:
def peopleAwareOfSecret(self, n: int, delay: int, forget: int) -> int:
m = (n << 1) + 10
d = [0] * m
cnt = [0] * m
cnt[1] = 1
for i in range(1, n + 1):
if cnt[i]:
d[i] += cnt[i]
d[i + forget] -= cnt[i]
nxt = i + delay
while nxt < i + forget:
cnt[nxt] += cnt[i]
nxt += 1
mod = 10**9 + 7
return sum(d[: n + 1]) % mod
class Solution {
private static final int MOD = (int) 1e9 + 7;
public int peopleAwareOfSecret(int n, int delay, int forget) {
int m = (n << 1) + 10;
long[] d = new long[m];
long[] cnt = new long[m];
cnt[1] = 1;
for (int i = 1; i <= n; ++i) {
if (cnt[i] > 0) {
d[i] = (d[i] + cnt[i]) % MOD;
d[i + forget] = (d[i + forget] - cnt[i] + MOD) % MOD;
int nxt = i + delay;
while (nxt < i + forget) {
cnt[nxt] = (cnt[nxt] + cnt[i]) % MOD;
++nxt;
}
}
}
long ans = 0;
for (int i = 1; i <= n; ++i) {
ans = (ans + d[i]) % MOD;
}
return (int) ans;
}
}
using ll = long long;
const int mod = 1e9 + 7;
class Solution {
public:
int peopleAwareOfSecret(int n, int delay, int forget) {
int m = (n << 1) + 10;
vector<ll> d(m);
vector<ll> cnt(m);
cnt[1] = 1;
for (int i = 1; i <= n; ++i) {
if (!cnt[i]) continue;
d[i] = (d[i] + cnt[i]) % mod;
d[i + forget] = (d[i + forget] - cnt[i] + mod) % mod;
int nxt = i + delay;
while (nxt < i + forget) {
cnt[nxt] = (cnt[nxt] + cnt[i]) % mod;
++nxt;
}
}
int ans = 0;
for (int i = 1; i <= n; ++i) ans = (ans + d[i]) % mod;
return ans;
}
};
func peopleAwareOfSecret(n int, delay int, forget int) int {
m := (n << 1) + 10
d := make([]int, m)
cnt := make([]int, m)
mod := int(1e9) + 7
cnt[1] = 1
for i := 1; i <= n; i++ {
if cnt[i] == 0 {
continue
}
d[i] = (d[i] + cnt[i]) % mod
d[i+forget] = (d[i+forget] - cnt[i] + mod) % mod
nxt := i + delay
for nxt < i+forget {
cnt[nxt] = (cnt[nxt] + cnt[i]) % mod
nxt++
}
}
ans := 0
for i := 1; i <= n; i++ {
ans = (ans + d[i]) % mod
}
return ans
}
function peopleAwareOfSecret(n: number, delay: number, forget: number): number {
let dp = new Array(n + 1).fill(0n);
dp[1] = 1n;
for (let i = 2; i <= n; i++) {
let pre = 0n;
for (let j = i - forget + 1; j <= i - delay; j++) {
if (j > 0) {
pre += dp[j];
}
}
dp[i] = pre;
}
let pre = 0n;
let i = n + 1;
for (let j = i - forget; j < i; j++) {
if (j > 0) {
pre += dp[j];
}
}
return Number(pre % BigInt(10 ** 9 + 7));
}