Skip to content

Latest commit

 

History

History
222 lines (196 loc) · 6.53 KB

File metadata and controls

222 lines (196 loc) · 6.53 KB

中文文档

Description

You are given a 0-indexed 2D integer array grid of size m x n. Each cell has one of two values:

  • 0 represents an empty cell,
  • 1 represents an obstacle that may be removed.

You can move up, down, left, or right from and to an empty cell.

Return the minimum number of obstacles to remove so you can move from the upper left corner (0, 0) to the lower right corner (m - 1, n - 1).

 

Example 1:

Input: grid = [[0,1,1],[1,1,0],[1,1,0]]
Output: 2
Explanation: We can remove the obstacles at (0, 1) and (0, 2) to create a path from (0, 0) to (2, 2).
It can be shown that we need to remove at least 2 obstacles, so we return 2.
Note that there may be other ways to remove 2 obstacles to create a path.

Example 2:

Input: grid = [[0,1,0,0,0],[0,1,0,1,0],[0,0,0,1,0]]
Output: 0
Explanation: We can move from (0, 0) to (2, 4) without removing any obstacles, so we return 0.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 105
  • 2 <= m * n <= 105
  • grid[i][j] is either 0 or 1.
  • grid[0][0] == grid[m - 1][n - 1] == 0

Solutions

Python3

class Solution:
    def minimumObstacles(self, grid: List[List[int]]) -> int:
        q = deque([(0, 0, 0)])
        m, n = len(grid), len(grid[0])
        vis = set()
        while q:
            i, j, k = q.popleft()
            if i == m - 1 and j == n - 1:
                return k
            if (i, j) in vis:
                continue
            vis.add((i, j))
            for a, b in ((0, -1), (0, 1), (-1, 0), (1, 0)):
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n:
                    if grid[x][y] == 0:
                        q.appendleft((x, y, k))
                    else:
                        q.append((x, y, k + 1))
        return 0

Java

class Solution {
    public int minimumObstacles(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        Deque<int[]> q = new ArrayDeque<>();
        q.offer(new int[] {0, 0, 0});
        int[] dirs = {-1, 0, 1, 0, -1};
        boolean[][] vis = new boolean[m][n];
        while (!q.isEmpty()) {
            int[] p = q.poll();
            int i = p[0], j = p[1], k = p[2];
            if (i == m - 1 && j == n - 1) {
                return k;
            }
            if (vis[i][j]) {
                continue;
            }
            vis[i][j] = true;
            for (int o = 0; o < 4; ++o) {
                int x = i + dirs[o], y = j + dirs[o + 1];
                if (x >= 0 && x < m && y >= 0 && y < n) {
                    if (grid[x][y] == 0) {
                        q.offerFirst(new int[] {x, y, k});
                    }
                    if (grid[x][y] == 1) {
                        q.offerLast(new int[] {x, y, k + 1});
                    }
                }
            }
        }
        return 0;
    }
}

C++

class Solution {
public:
    int minimumObstacles(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        deque<tuple<int, int, int>> q {{0, 0, 0}};
        vector<vector<bool>> vis(m, vector<bool>(n));
        vector<int> dirs = {-1, 0, 1, 0, -1};
        while (!q.empty()) {
            auto [i, j, k] = q.front();
            q.pop_front();
            if (i == m - 1 && j == n - 1) return k;
            if (vis[i][j]) continue;
            vis[i][j] = true;
            for (int o = 0; o < 4; ++o) {
                int x = i + dirs[o], y = j + dirs[o + 1];
                if (x >= 0 && x < m && y >= 0 && y < n) {
                    if (grid[x][y] == 0)
                        q.push_front({x, y, k});
                    else
                        q.push_back({x, y, k + 1});
                }
            }
        }
        return 0;
    }
};

Go

func minimumObstacles(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	q := doublylinkedlist.New()
	q.Add([]int{0, 0, 0})
	vis := make([][]bool, m)
	for i := range vis {
		vis[i] = make([]bool, n)
	}
	dirs := []int{-1, 0, 1, 0, -1}
	for !q.Empty() {
		v, _ := q.Get(0)
		p := v.([]int)
		q.Remove(0)
		i, j, k := p[0], p[1], p[2]
		if i == m-1 && j == n-1 {
			return k
		}
		if vis[i][j] {
			continue
		}
		vis[i][j] = true
		for o := 0; o < 4; o++ {
			x, y := i+dirs[o], j+dirs[o+1]
			if x >= 0 && x < m && y >= 0 && y < n {
				if grid[x][y] == 0 {
					q.Insert(0, []int{x, y, k})
				} else {
					q.Add([]int{x, y, k + 1})
				}
			}
		}
	}
	return 0
}

TypeScript

function minimumObstacles(grid: number[][]): number {
    const m = grid.length,
        n = grid[0].length;
    const dirs = [
        [0, 1],
        [0, -1],
        [1, 0],
        [-1, 0],
    ];
    let ans = Array.from({ length: m }, v => new Array(n).fill(Infinity));
    ans[0][0] = 0;
    let deque = [[0, 0]];
    while (deque.length) {
        let [x, y] = deque.shift();
        for (let [dx, dy] of dirs) {
            let [i, j] = [x + dx, y + dy];
            if (i < 0 || i > m - 1 || j < 0 || j > n - 1) continue;
            const cost = grid[i][j];
            if (ans[x][y] + cost >= ans[i][j]) continue;
            ans[i][j] = ans[x][y] + cost;
            deque.push([i, j]);
        }
    }
    return ans[m - 1][n - 1];
}

...