Skip to content

Latest commit

 

History

History
267 lines (228 loc) · 8.63 KB

File metadata and controls

267 lines (228 loc) · 8.63 KB

English Version

题目描述

作为国王的统治者,你有一支巫师军队听你指挥。

给你一个下标从 0 开始的整数数组 strength ,其中 strength[i] 表示第 i 位巫师的力量值。对于连续的一组巫师(也就是这些巫师的力量值是 strength 的 子数组),总力量 定义为以下两个值的 乘积 :

  • 巫师中 最弱 的能力值。
  • 组中所有巫师的个人力量值 之和 。

请你返回 所有 巫师组的  力量之和。由于答案可能很大,请将答案对 109 + 7 取余 后返回。

子数组 是一个数组里 非空 连续子序列。

 

示例 1:

输入:strength = [1,3,1,2]
输出:44
解释:以下是所有连续巫师组:
- [1,3,1,2] 中 [1] ,总力量值为 min([1]) * sum([1]) = 1 * 1 = 1
- [1,3,1,2] 中 [3] ,总力量值为 min([3]) * sum([3]) = 3 * 3 = 9
- [1,3,1,2] 中 [1] ,总力量值为 min([1]) * sum([1]) = 1 * 1 = 1
- [1,3,1,2] 中 [2] ,总力量值为 min([2]) * sum([2]) = 2 * 2 = 4
- [1,3,1,2] 中 [1,3] ,总力量值为 min([1,3]) * sum([1,3]) = 1 * 4 = 4
- [1,3,1,2] 中 [3,1] ,总力量值为 min([3,1]) * sum([3,1]) = 1 * 4 = 4
- [1,3,1,2] 中 [1,2] ,总力量值为 min([1,2]) * sum([1,2]) = 1 * 3 = 3
- [1,3,1,2] 中 [1,3,1] ,总力量值为 min([1,3,1]) * sum([1,3,1]) = 1 * 5 = 5
- [1,3,1,2] 中 [3,1,2] ,总力量值为 min([3,1,2]) * sum([3,1,2]) = 1 * 6 = 6
- [1,3,1,2] 中 [1,3,1,2] ,总力量值为 min([1,3,1,2]) * sum([1,3,1,2]) = 1 * 7 = 7
所有力量值之和为 1 + 9 + 1 + 4 + 4 + 4 + 3 + 5 + 6 + 7 = 44 。

示例 2:

输入:strength = [5,4,6]
输出:213
解释:以下是所有连续巫师组:
- [5,4,6] 中 [5] ,总力量值为 min([5]) * sum([5]) = 5 * 5 = 25
- [5,4,6] 中 [4] ,总力量值为 min([4]) * sum([4]) = 4 * 4 = 16
- [5,4,6] 中 [6] ,总力量值为 min([6]) * sum([6]) = 6 * 6 = 36
- [5,4,6] 中 [5,4] ,总力量值为 min([5,4]) * sum([5,4]) = 4 * 9 = 36
- [5,4,6] 中 [4,6] ,总力量值为 min([4,6]) * sum([4,6]) = 4 * 10 = 40
- [5,4,6] 中 [5,4,6] ,总力量值为 min([5,4,6]) * sum([5,4,6]) = 4 * 15 = 60
所有力量值之和为 25 + 16 + 36 + 36 + 40 + 60 = 213 。

 

提示:

  • 1 <= strength.length <= 105
  • 1 <= strength[i] <= 109

解法

方法一:单调栈 + 前缀和

相似题目:907. 子数组的最小值之和

Python3

class Solution:
    def totalStrength(self, strength: List[int]) -> int:
        n = len(strength)
        left = [-1] * n
        right = [n] * n
        stk = []
        for i, v in enumerate(strength):
            while stk and strength[stk[-1]] >= v:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        for i in range(n - 1, -1, -1):
            while stk and strength[stk[-1]] > strength[i]:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)

        ss = list(accumulate(list(accumulate(strength, initial=0)), initial=0))
        mod = int(1e9) + 7
        ans = 0
        for i, v in enumerate(strength):
            l, r = left[i] + 1, right[i] - 1
            a = (ss[r + 2] - ss[i + 1]) * (i - l + 1)
            b = (ss[i + 1] - ss[l]) * (r - i + 1)
            ans = (ans + (a - b) * v) % mod
        return ans

Java

class Solution {
    public int totalStrength(int[] strength) {
        int n = strength.length;
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(left, -1);
        Arrays.fill(right, n);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && strength[stk.peek()] >= strength[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && strength[stk.peek()] > strength[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        int mod = (int) 1e9 + 7;
        int[] s = new int[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = (s[i] + strength[i]) % mod;
        }
        int[] ss = new int[n + 2];
        for (int i = 0; i < n + 1; ++i) {
            ss[i + 1] = (ss[i] + s[i]) % mod;
        }
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            int v = strength[i];
            int l = left[i] + 1, r = right[i] - 1;
            long a = (long) (i - l + 1) * (ss[r + 2] - ss[i + 1]);
            long b = (long) (r - i + 1) * (ss[i + 1] - ss[l]);
            ans = (ans + v * ((a - b) % mod)) % mod;
        }
        return (int) (ans + mod) % mod;
    }
}

C++

class Solution {
public:
    int totalStrength(vector<int>& strength) {
        int n = strength.size();
        vector<int> left(n, -1);
        vector<int> right(n, n);
        stack<int> stk;
        for (int i = 0; i < n; ++i) {
            while (!stk.empty() && strength[stk.top()] >= strength[i]) stk.pop();
            if (!stk.empty()) left[i] = stk.top();
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.empty() && strength[stk.top()] > strength[i]) stk.pop();
            if (!stk.empty()) right[i] = stk.top();
            stk.push(i);
        }
        int mod = 1e9 + 7;
        vector<int> s(n + 1);
        for (int i = 0; i < n; ++i) s[i + 1] = (s[i] + strength[i]) % mod;
        vector<int> ss(n + 2);
        for (int i = 0; i < n + 1; ++i) ss[i + 1] = (ss[i] + s[i]) % mod;
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int v = strength[i];
            int l = left[i] + 1, r = right[i] - 1;
            long a = (long)(i - l + 1) * (ss[r + 2] - ss[i + 1]);
            long b = (long)(r - i + 1) * (ss[i + 1] - ss[l]);
            ans = (ans + v * ((a - b) % mod)) % mod;
        }
        return (int)(ans + mod) % mod;
    }
};

Go

func totalStrength(strength []int) int {
	n := len(strength)
	left := make([]int, n)
	right := make([]int, n)
	for i := range left {
		left[i] = -1
		right[i] = n
	}
	stk := []int{}
	for i, v := range strength {
		for len(stk) > 0 && strength[stk[len(stk)-1]] >= v {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && strength[stk[len(stk)-1]] > strength[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	mod := int(1e9) + 7
	s := make([]int, n+1)
	for i, v := range strength {
		s[i+1] = (s[i] + v) % mod
	}
	ss := make([]int, n+2)
	for i, v := range s {
		ss[i+1] = (ss[i] + v) % mod
	}
	ans := 0
	for i, v := range strength {
		l, r := left[i]+1, right[i]-1
		a := (ss[r+2] - ss[i+1]) * (i - l + 1)
		b := (ss[i+1] - ss[l]) * (r - i + 1)
		ans = (ans + v*((a-b)%mod)) % mod
	}
	return (ans + mod) % mod
}

TypeScript

...