The k-beauty of an integer num
is defined as the number of substrings of num
when it is read as a string that meet the following conditions:
- It has a length of
k
. - It is a divisor of
num
.
Given integers num
and k
, return the k-beauty of num
.
Note:
- Leading zeros are allowed.
0
is not a divisor of any value.
A substring is a contiguous sequence of characters in a string.
Example 1:
Input: num = 240, k = 2 Output: 2 Explanation: The following are the substrings of num of length k: - "24" from "240": 24 is a divisor of 240. - "40" from "240": 40 is a divisor of 240. Therefore, the k-beauty is 2.
Example 2:
Input: num = 430043, k = 2 Output: 2 Explanation: The following are the substrings of num of length k: - "43" from "430043": 43 is a divisor of 430043. - "30" from "430043": 30 is not a divisor of 430043. - "00" from "430043": 0 is not a divisor of 430043. - "04" from "430043": 4 is not a divisor of 430043. - "43" from "430043": 43 is a divisor of 430043. Therefore, the k-beauty is 2.
Constraints:
1 <= num <= 109
1 <= k <= num.length
(takingnum
as a string)
class Solution:
def divisorSubstrings(self, num: int, k: int) -> int:
ans = 0
s = str(num)
for i in range(len(s) - k + 1):
t = int(s[i : i + k])
if t and num % t == 0:
ans += 1
return ans
class Solution {
public int divisorSubstrings(int num, int k) {
int ans = 0;
String s = "" + num;
for (int i = 0; i < s.length() - k + 1; ++i) {
int t = Integer.parseInt(s.substring(i, i + k));
if (t != 0 && num % t == 0) {
++ans;
}
}
return ans;
}
}
class Solution {
public:
int divisorSubstrings(int num, int k) {
int ans = 0;
string s = to_string(num);
for (int i = 0; i < s.size() - k + 1; ++i) {
int t = stoi(s.substr(i, k));
ans += t && num % t == 0;
}
return ans;
}
};
func divisorSubstrings(num int, k int) int {
ans := 0
s := strconv.Itoa(num)
for i := 0; i < len(s)-k+1; i++ {
t, _ := strconv.Atoi(s[i : i+k])
if t > 0 && num%t == 0 {
ans++
}
}
return ans
}