Given an integer array nums
and two integers k
and p
, return the number of distinct subarrays which have at most k
elements divisible by p
.
Two arrays nums1
and nums2
are said to be distinct if:
- They are of different lengths, or
- There exists at least one index
i
wherenums1[i] != nums2[i]
.
A subarray is defined as a non-empty contiguous sequence of elements in an array.
Example 1:
Input: nums = [2,3,3,2,2], k = 2, p = 2 Output: 11 Explanation: The elements at indices 0, 3, and 4 are divisible by p = 2. The 11 distinct subarrays which have at most k = 2 elements divisible by 2 are: [2], [2,3], [2,3,3], [2,3,3,2], [3], [3,3], [3,3,2], [3,3,2,2], [3,2], [3,2,2], and [2,2]. Note that the subarrays [2] and [3] occur more than once in nums, but they should each be counted only once. The subarray [2,3,3,2,2] should not be counted because it has 3 elements that are divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 4, p = 1 Output: 10 Explanation: All element of nums are divisible by p = 1. Also, every subarray of nums will have at most 4 elements that are divisible by 1. Since all subarrays are distinct, the total number of subarrays satisfying all the constraints is 10.
Constraints:
1 <= nums.length <= 200
1 <= nums[i], p <= 200
1 <= k <= nums.length
Follow up:
Can you solve this problem in O(n2) time complexity?
class Solution:
def countDistinct(self, nums: List[int], k: int, p: int) -> int:
n = len(nums)
s = set()
for i in range(n):
cnt = 0
t = ""
for j in range(i, n):
if nums[j] % p == 0:
cnt += 1
if cnt <= k:
t += str(nums[j]) + ","
s.add(t)
else:
break
return len(s)
class Solution {
public int countDistinct(int[] nums, int k, int p) {
Set<String> s = new HashSet<>();
for (int i = 0, n = nums.length; i < n; ++i) {
int cnt = 0;
String t = "";
for (int j = i; j < n; ++j) {
if (nums[j] % p == 0) {
++cnt;
}
if (cnt > k) {
break;
}
t += nums[j] + ",";
s.add(t);
}
}
return s.size();
}
}
class Solution {
public:
int countDistinct(vector<int>& nums, int k, int p) {
unordered_set<string> s;
for (int i = 0, n = nums.size(); i < n; ++i) {
int cnt = 0;
string t = "";
for (int j = i; j < n; ++j) {
if (nums[j] % p == 0) ++cnt;
if (cnt > k) break;
t += to_string(nums[j]) + ",";
s.insert(t);
}
}
return s.size();
}
};
func countDistinct(nums []int, k int, p int) int {
s := map[string]bool{}
for i, n := 0, len(nums); i < n; i++ {
cnt := 0
t := ""
for j := i; j < n; j++ {
if nums[j]%p == 0 {
cnt++
}
if cnt > k {
break
}
t += string(nums[j]) + ","
s[t] = true
}
}
return len(s)
}
function countDistinct(nums: number[], k: number, p: number): number {
const n = nums.length;
const numSet = new Set(nums);
const verfiedSet = new Set<number>();
for (let i of numSet) {
if (i % p != 0) continue;
verfiedSet.add(i);
}
let ans = new Set<string>();
for (let i = 0; i < n; i++) {
let sub = [];
for (let j = i, cnt = 0; j < n; j++) {
const num = nums[j];
if (verfiedSet.has(num)) cnt++;
if (cnt > k) break;
sub.push(num);
const str = sub.join(',');
ans.add(str);
}
}
return ans.size;
}