You are given a positive integer n
representing the number of nodes of a Directed Acyclic Graph (DAG). The nodes are numbered from 0
to n - 1
(inclusive).
You are also given a 2D integer array edges
, where edges[i] = [fromi, toi]
denotes that there is a unidirectional edge from fromi
to toi
in the graph.
Return a list answer
, where answer[i]
is the list of ancestors of the ith
node, sorted in ascending order.
A node u
is an ancestor of another node v
if u
can reach v
via a set of edges.
Example 1:
Input: n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]] Output: [[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]] Explanation: The above diagram represents the input graph. - Nodes 0, 1, and 2 do not have any ancestors. - Node 3 has two ancestors 0 and 1. - Node 4 has two ancestors 0 and 2. - Node 5 has three ancestors 0, 1, and 3. - Node 6 has five ancestors 0, 1, 2, 3, and 4. - Node 7 has four ancestors 0, 1, 2, and 3.
Example 2:
Input: n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] Output: [[],[0],[0,1],[0,1,2],[0,1,2,3]] Explanation: The above diagram represents the input graph. - Node 0 does not have any ancestor. - Node 1 has one ancestor 0. - Node 2 has two ancestors 0 and 1. - Node 3 has three ancestors 0, 1, and 2. - Node 4 has four ancestors 0, 1, 2, and 3.
Constraints:
1 <= n <= 1000
0 <= edges.length <= min(2000, n * (n - 1) / 2)
edges[i].length == 2
0 <= fromi, toi <= n - 1
fromi != toi
- There are no duplicate edges.
- The graph is directed and acyclic.
BFS.
class Solution:
def getAncestors(self, n: int, edges: List[List[int]]) -> List[List[int]]:
g = defaultdict(list)
for u, v in edges:
g[v].append(u)
ans = []
for i in range(n):
if not g[i]:
ans.append([])
continue
q = deque([i])
vis = [False] * n
vis[i] = True
t = []
while q:
for _ in range(len(q)):
v = q.popleft()
for u in g[v]:
if not vis[u]:
vis[u] = True
q.append(u)
t.append(u)
ans.append(sorted(t))
return ans
class Solution {
public List<List<Integer>> getAncestors(int n, int[][] edges) {
List<Integer>[] g = new List[n];
for (int i = 0; i < n; ++i) {
g[i] = new ArrayList<>();
}
for (int[] e : edges) {
g[e[1]].add(e[0]);
}
List<List<Integer>> ans = new ArrayList<>();
for (int i = 0; i < n; ++i) {
List<Integer> t = new ArrayList<>();
if (g[i].isEmpty()) {
ans.add(t);
continue;
}
Deque<Integer> q = new ArrayDeque<>();
q.offer(i);
boolean[] vis = new boolean[n];
vis[i] = true;
while (!q.isEmpty()) {
for (int j = q.size(); j > 0; --j) {
int v = q.poll();
for (int u : g[v]) {
if (!vis[u]) {
vis[u] = true;
q.offer(u);
t.add(u);
}
}
}
}
Collections.sort(t);
ans.add(t);
}
return ans;
}
}
class Solution {
public:
vector<vector<int>> getAncestors(int n, vector<vector<int>>& edges) {
vector<vector<int>> g(n);
for (auto& e : edges) g[e[1]].push_back(e[0]);
vector<vector<int>> ans;
for (int i = 0; i < n; ++i) {
vector<int> t;
if (g[i].empty()) {
ans.push_back(t);
continue;
}
queue<int> q {{i}};
vector<bool> vis(n);
vis[i] = true;
while (!q.empty()) {
for (int j = q.size(); j > 0; --j) {
int v = q.front();
q.pop();
for (int u : g[v]) {
if (vis[u]) continue;
vis[u] = true;
q.push(u);
t.push_back(u);
}
}
}
sort(t.begin(), t.end());
ans.push_back(t);
}
return ans;
}
};
func getAncestors(n int, edges [][]int) [][]int {
g := make([][]int, n)
for _, e := range edges {
g[e[1]] = append(g[e[1]], e[0])
}
var ans [][]int
for i := 0; i < n; i++ {
var t []int
if len(g[i]) == 0 {
ans = append(ans, t)
continue
}
q := []int{i}
vis := make([]bool, n)
vis[i] = true
for len(q) > 0 {
for j := len(q); j > 0; j-- {
v := q[0]
q = q[1:]
for _, u := range g[v] {
if !vis[u] {
vis[u] = true
q = append(q, u)
t = append(t, u)
}
}
}
}
sort.Ints(t)
ans = append(ans, t)
}
return ans
}