You are given an integer array nums
of length n
and an integer numSlots
such that 2 * numSlots >= n
. There are numSlots
slots numbered from 1
to numSlots
.
You have to place all n
integers into the slots such that each slot contains at most two numbers. The AND sum of a given placement is the sum of the bitwise AND
of every number with its respective slot number.
- For example, the AND sum of placing the numbers
[1, 3]
into slot1
and[4, 6]
into slot2
is equal to(1 AND 1) + (3 AND 1) + (4 AND 2) + (6 AND 2) = 1 + 1 + 0 + 2 = 4
.
Return the maximum possible AND sum of nums
given numSlots
slots.
Example 1:
Input: nums = [1,2,3,4,5,6], numSlots = 3 Output: 9 Explanation: One possible placement is [1, 4] into slot 1, [2, 6] into slot 2, and [3, 5] into slot 3. This gives the maximum AND sum of (1 AND 1) + (4 AND 1) + (2 AND 2) + (6 AND 2) + (3 AND 3) + (5 AND 3) = 1 + 0 + 2 + 2 + 3 + 1 = 9.
Example 2:
Input: nums = [1,3,10,4,7,1], numSlots = 9 Output: 24 Explanation: One possible placement is [1, 1] into slot 1, [3] into slot 3, [4] into slot 4, [7] into slot 7, and [10] into slot 9. This gives the maximum AND sum of (1 AND 1) + (1 AND 1) + (3 AND 3) + (4 AND 4) + (7 AND 7) + (10 AND 9) = 1 + 1 + 3 + 4 + 7 + 8 = 24. Note that slots 2, 5, 6, and 8 are empty which is permitted.
Constraints:
n == nums.length
1 <= numSlots <= 9
1 <= n <= 2 * numSlots
1 <= nums[i] <= 15