给你一个 正 整数数组 beans
,其中每个整数表示一个袋子里装的魔法豆的数目。
请你从每个袋子中 拿出 一些豆子(也可以 不拿出),使得剩下的 非空 袋子中(即 至少 还有 一颗 魔法豆的袋子)魔法豆的数目 相等 。一旦魔法豆从袋子中取出,你不能将它放到任何其他的袋子中。
请你返回你需要拿出魔法豆的 最少数目。
示例 1:
输入:beans = [4,1,6,5] 输出:4 解释: - 我们从有 1 个魔法豆的袋子中拿出 1 颗魔法豆。 剩下袋子中魔法豆的数目为:[4,0,6,5] - 然后我们从有 6 个魔法豆的袋子中拿出 2 个魔法豆。 剩下袋子中魔法豆的数目为:[4,0,4,5] - 然后我们从有 5 个魔法豆的袋子中拿出 1 个魔法豆。 剩下袋子中魔法豆的数目为:[4,0,4,4] 总共拿出了 1 + 2 + 1 = 4 个魔法豆,剩下非空袋子中魔法豆的数目相等。 没有比取出 4 个魔法豆更少的方案。
示例 2:
输入:beans = [2,10,3,2] 输出:7 解释: - 我们从有 2 个魔法豆的其中一个袋子中拿出 2 个魔法豆。 剩下袋子中魔法豆的数目为:[0,10,3,2] - 然后我们从另一个有 2 个魔法豆的袋子中拿出 2 个魔法豆。 剩下袋子中魔法豆的数目为:[0,10,3,0] - 然后我们从有 3 个魔法豆的袋子中拿出 3 个魔法豆。 剩下袋子中魔法豆的数目为:[0,10,0,0] 总共拿出了 2 + 2 + 3 = 7 个魔法豆,剩下非空袋子中魔法豆的数目相等。 没有比取出 7 个魔法豆更少的方案。
提示:
1 <= beans.length <= 105
1 <= beans[i] <= 105
方法一:排序求和
class Solution:
def minimumRemoval(self, beans: List[int]) -> int:
beans.sort()
ans = s = sum(beans)
n = len(beans)
for i, v in enumerate(beans):
ans = min(ans, s - v * (n - i))
return ans
class Solution {
public long minimumRemoval(int[] beans) {
Arrays.sort(beans);
long s = 0;
for (int v : beans) {
s += v;
}
long ans = s;
int n = beans.length;
for (int i = 0; i < n; ++i) {
ans = Math.min(ans, s - (long) beans[i] * (n - i));
}
return ans;
}
}
function minimumRemoval(beans: number[]): number {
const n = beans.length;
let sum = beans.reduce((a, c) => a + c, 0);
beans.sort((a, b) => a - b);
let ans = sum;
for (let i = 0; i < n; i++) {
let num = beans[i];
ans = Math.min(sum - num * (n - i), ans);
}
return ans;
}
class Solution {
public:
long long minimumRemoval(vector<int>& beans) {
sort(beans.begin(), beans.end());
long long s = accumulate(beans.begin(), beans.end(), 0ll);
long long ans = s;
int n = beans.size();
for (int i = 0; i < n; ++i) ans = min(ans, s - 1ll * beans[i] * (n - i));
return ans;
}
};
func minimumRemoval(beans []int) int64 {
sort.Ints(beans)
s := 0
for _, v := range beans {
s += v
}
ans := s
n := len(beans)
for i, v := range beans {
ans = min(ans, s-v*(n-i))
}
return int64(ans)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}