You want to build some obstacle courses. You are given a 0-indexed integer array obstacles
of length n
, where obstacles[i]
describes the height of the ith
obstacle.
For every index i
between 0
and n - 1
(inclusive), find the length of the longest obstacle course in obstacles
such that:
- You choose any number of obstacles between
0
andi
inclusive. - You must include the
ith
obstacle in the course. - You must put the chosen obstacles in the same order as they appear in
obstacles
. - Every obstacle (except the first) is taller than or the same height as the obstacle immediately before it.
Return an array ans
of length n
, where ans[i]
is the length of the longest obstacle course for index i
as described above.
Example 1:
Input: obstacles = [1,2,3,2] Output: [1,2,3,3] Explanation: The longest valid obstacle course at each position is: - i = 0: [1], [1] has length 1. - i = 1: [1,2], [1,2] has length 2. - i = 2: [1,2,3], [1,2,3] has length 3. - i = 3: [1,2,3,2], [1,2,2] has length 3.
Example 2:
Input: obstacles = [2,2,1] Output: [1,2,1] Explanation: The longest valid obstacle course at each position is: - i = 0: [2], [2] has length 1. - i = 1: [2,2], [2,2] has length 2. - i = 2: [2,2,1], [1] has length 1.
Example 3:
Input: obstacles = [3,1,5,6,4,2] Output: [1,1,2,3,2,2] Explanation: The longest valid obstacle course at each position is: - i = 0: [3], [3] has length 1. - i = 1: [3,1], [1] has length 1. - i = 2: [3,1,5], [3,5] has length 2. [1,5] is also valid. - i = 3: [3,1,5,6], [3,5,6] has length 3. [1,5,6] is also valid. - i = 4: [3,1,5,6,4], [3,4] has length 2. [1,4] is also valid. - i = 5: [3,1,5,6,4,2], [1,2] has length 2.
Constraints:
n == obstacles.length
1 <= n <= 105
1 <= obstacles[i] <= 107
Binary Indexed Tree.
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, val):
while x <= self.n:
self.c[x] = max(self.c[x], val)
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x > 0:
s = max(s, self.c[x])
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def longestObstacleCourseAtEachPosition(self, obstacles: List[int]) -> List[int]:
s = sorted(set(obstacles))
m = {v: i for i, v in enumerate(s, 1)}
tree = BinaryIndexedTree(len(m))
ans = []
for v in obstacles:
x = m[v]
ans.append(1 + tree.query(x))
tree.update(x, ans[-1])
return ans
class Solution {
public int[] longestObstacleCourseAtEachPosition(int[] obstacles) {
TreeSet<Integer> ts = new TreeSet();
for (int v : obstacles) {
ts.add(v);
}
int idx = 1;
Map<Integer, Integer> m = new HashMap<>();
for (int v : ts) {
m.put(v, idx++);
}
BinaryIndexedTree tree = new BinaryIndexedTree(m.size());
int n = obstacles.length;
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
int v = obstacles[i];
int x = m.get(v);
ans[i] = tree.query(x) + 1;
tree.update(x, ans[i]);
}
return ans;
}
}
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int val) {
while (x <= n) {
c[x] = Math.max(c[x], val);
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s = Math.max(s, c[x]);
x -= lowbit(x);
}
return s;
}
public static int lowbit(int x) {
return x & -x;
}
}
class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) { }
void update(int x, int val) {
while (x <= n) {
c[x] = max(c[x], val);
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0) {
s = max(s, c[x]);
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
vector<int> longestObstacleCourseAtEachPosition(vector<int>& obstacles) {
set<int> s(obstacles.begin(), obstacles.end());
int idx = 1;
unordered_map<int, int> m;
for (int v : s) m[v] = idx++;
BinaryIndexedTree* tree = new BinaryIndexedTree(m.size());
int n = obstacles.size();
vector<int> ans(n);
for (int i = 0; i < n; ++i) {
int v = obstacles[i];
int x = m[v];
ans[i] = 1 + tree->query(x);
tree->update(x, ans[i]);
}
return ans;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, val int) {
for x <= this.n {
if this.c[x] < val {
this.c[x] = val
}
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
if s < this.c[x] {
s = this.c[x]
}
x -= this.lowbit(x)
}
return s
}
func longestObstacleCourseAtEachPosition(obstacles []int) []int {
s := make(map[int]bool)
for _, v := range obstacles {
s[v] = true
}
var t []int
for v, _ := range s {
t = append(t, v)
}
sort.Ints(t)
m := make(map[int]int)
for i, v := range t {
m[v] = i + 1
}
n := len(obstacles)
ans := make([]int, n)
tree := newBinaryIndexedTree(len(m))
for i, v := range obstacles {
x := m[v]
ans[i] = 1 + tree.query(x)
tree.update(x, ans[i])
}
return ans
}