一个国家有 n
个城市,城市编号为 0
到 n - 1
,题目保证 所有城市 都由双向道路 连接在一起 。道路由二维整数数组 edges
表示,其中 edges[i] = [xi, yi, timei]
表示城市 xi
和 yi
之间有一条双向道路,耗费时间为 timei
分钟。两个城市之间可能会有多条耗费时间不同的道路,但是不会有道路两头连接着同一座城市。
每次经过一个城市时,你需要付通行费。通行费用一个长度为 n
且下标从 0 开始的整数数组 passingFees
表示,其中 passingFees[j]
是你经过城市 j
需要支付的费用。
一开始,你在城市 0
,你想要在 maxTime
分钟以内 (包含 maxTime
分钟)到达城市 n - 1
。旅行的 费用 为你经过的所有城市 通行费之和 (包括 起点和终点城市的通行费)。
给你 maxTime
,edges
和 passingFees
,请你返回完成旅行的 最小费用 ,如果无法在 maxTime
分钟以内完成旅行,请你返回 -1
。
示例 1:
输入:maxTime = 30, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3] 输出:11 解释:最优路径为 0 -> 1 -> 2 -> 5 ,总共需要耗费 30 分钟,需要支付 11 的通行费。
示例 2:
输入:maxTime = 29, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3] 输出:48 解释:最优路径为 0 -> 3 -> 4 -> 5 ,总共需要耗费 26 分钟,需要支付 48 的通行费。 你不能选择路径 0 -> 1 -> 2 -> 5 ,因为这条路径耗费的时间太长。
示例 3:
输入:maxTime = 25, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3] 输出:-1 解释:无法在 25 分钟以内从城市 0 到达城市 5 。
提示:
1 <= maxTime <= 1000
n == passingFees.length
2 <= n <= 1000
n - 1 <= edges.length <= 1000
0 <= xi, yi <= n - 1
1 <= timei <= 1000
1 <= passingFees[j] <= 1000
- 图中两个节点之间可能有多条路径。
- 图中不含有自环。