Skip to content

Latest commit

 

History

History
253 lines (217 loc) · 7.59 KB

File metadata and controls

253 lines (217 loc) · 7.59 KB

中文文档

Description

You are given an integer matrix isWater of size m x n that represents a map of land and water cells.

  • If isWater[i][j] == 0, cell (i, j) is a land cell.
  • If isWater[i][j] == 1, cell (i, j) is a water cell.

You must assign each cell a height in a way that follows these rules:

  • The height of each cell must be non-negative.
  • If the cell is a water cell, its height must be 0.
  • Any two adjacent cells must have an absolute height difference of at most 1. A cell is adjacent to another cell if the former is directly north, east, south, or west of the latter (i.e., their sides are touching).

Find an assignment of heights such that the maximum height in the matrix is maximized.

Return an integer matrix height of size m x n where height[i][j] is cell (i, j)'s height. If there are multiple solutions, return any of them.

 

Example 1:

Input: isWater = [[0,1],[0,0]]
Output: [[1,0],[2,1]]
Explanation: The image shows the assigned heights of each cell.
The blue cell is the water cell, and the green cells are the land cells.

Example 2:

Input: isWater = [[0,0,1],[1,0,0],[0,0,0]]
Output: [[1,1,0],[0,1,1],[1,2,2]]
Explanation: A height of 2 is the maximum possible height of any assignment.
Any height assignment that has a maximum height of 2 while still meeting the rules will also be accepted.

 

Constraints:

  • m == isWater.length
  • n == isWater[i].length
  • 1 <= m, n <= 1000
  • isWater[i][j] is 0 or 1.
  • There is at least one water cell.

Solutions

BFS.

Python3

class Solution:
    def highestPeak(self, isWater: List[List[int]]) -> List[List[int]]:
        m, n = len(isWater), len(isWater[0])
        ans = [[-1] * n for _ in range(m)]
        q = deque()
        for i in range(m):
            for j in range(n):
                if isWater[i][j] == 1:
                    ans[i][j] = 0
                    q.append((i, j))
        while q:
            i, j = q.popleft()
            for a, b in [[0, -1], [0, 1], [1, 0], [-1, 0]]:
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n and ans[x][y] == -1:
                    ans[x][y] = ans[i][j] + 1
                    q.append((x, y))
        return ans

Java

class Solution {
    private int[][] dirs = new int[][] {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

    public int[][] highestPeak(int[][] isWater) {
        int m = isWater.length, n = isWater[0].length;
        int[][] ans = new int[m][n];
        for (int i = 0; i < m; ++i) {
            Arrays.fill(ans[i], -1);
        }
        Deque<int[]> q = new LinkedList<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (isWater[i][j] == 1) {
                    ans[i][j] = 0;
                    q.offerLast(new int[] {i, j});
                }
            }
        }
        while (!q.isEmpty()) {
            int[] p = q.pollFirst();
            int i = p[0], j = p[1];
            for (int[] dir : dirs) {
                int x = i + dir[0], y = j + dir[1];
                if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
                    ans[x][y] = ans[i][j] + 1;
                    q.offerLast(new int[] {x, y});
                }
            }
        }
        return ans;
    }
}

TypeScript

function highestPeak(isWater: number[][]): number[][] {
    const m = isWater.length,
        n = isWater[0].length;
    let ans: Array<Array<number>> = Array.from({ length: m }, v =>
        new Array(n).fill(-1),
    );
    // BFS
    let queue: Array<Array<number>> = []; // i, j, num
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (isWater[i][j]) {
                ans[i][j] = 0;
                queue.push([i, j, 0]);
            }
        }
    }
    const directions = [
        [0, -1],
        [-1, 0],
        [0, 1],
        [1, 0],
    ]; // left, up, right, down
    while (queue.length) {
        // 消除push/shift出现超时问题
        let tmp: Array<Array<number>> = [];
        for (const [i, j, num] of queue) {
            for (const [dx, dy] of directions) {
                const x = i + dx,
                    y = j + dy;
                // 校验合法的相邻格子
                if (x > -1 && x < m && y > -1 && y < n && ans[x][y] == -1) {
                    ans[x][y] = num + 1;
                    tmp.push([x, y, num + 1]);
                }
            }
        }
        queue = tmp;
    }
    return ans;
}

C++

typedef pair<int, int> PII;

class Solution {
public:
    vector<vector<int>> dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

    vector<vector<int>> highestPeak(vector<vector<int>>& isWater) {
        int m = isWater.size(), n = isWater[0].size();
        vector<vector<int>> ans(m, vector<int>(n, -1));
        queue<PII> q;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (isWater[i][j] == 1) {
                    ans[i][j] = 0;
                    q.push({i, j});
                }
            }
        }
        while (!q.empty()) {
            PII p = q.front();
            q.pop();
            int i = p.first, j = p.second;
            for (auto& dir : dirs) {
                int x = i + dir[0], y = j + dir[1];
                if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
                    ans[x][y] = ans[i][j] + 1;
                    q.push({x, y});
                }
            }
        }
        return ans;
    }
};

Go

func highestPeak(isWater [][]int) [][]int {
	m, n := len(isWater), len(isWater[0])
	ans := make([][]int, m)
	for i := range ans {
		ans[i] = make([]int, n)
		for j := range ans[i] {
			ans[i][j] = -1
		}
	}
	type pair struct{ i, j int }
	var q []pair
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if isWater[i][j] == 1 {
				ans[i][j] = 0
				q = append(q, pair{i, j})
			}
		}
	}
	dirs := [4][2]int{{0, -1}, {0, 1}, {1, 0}, {-1, 0}}
	for len(q) > 0 {
		p := q[0]
		q = q[1:]
		for _, dir := range dirs {
			x, y := p.i+dir[0], p.j+dir[1]
			if x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1 {
				ans[x][y] = ans[p.i][p.j] + 1
				q = append(q, pair{x, y})
			}
		}
	}
	return ans
}

...